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How to read a paper (Dally, Stanford)  
n  1. Before diving in, think about what your goals are, and what you want to get out of the paper. You need to approach the 

reading with an aim to extract info; you may want to target specific areas of the paper in case you are looking for 
something particular.  
 

n  2. Read the abstract first. This should be an advertisement for the paper. 

n  3. Read the conclusions. Figure out what the authors accomplished, so you know what their goals were. 

n  4. Find the “paper overview" section in the introduction and read it if you need to.  If you don't know about a certain topic, 
you may find background material here. 

n  5. Make a quick pass through the paper, so you understand their presentation of the topics. Figure out how the equations 
fit into the discussion, but don't try to understand the math. On the second pass, read the paper more carefully. 

n  6. Highlight important parts of a paragraph so you don't have to reread the entire paragraph each time. This helps in class 
discussions as well. 

n  7. Write down an outline as you go- this will help you remember what you have read. You can refer back to this outline as 
you go through the paper. 

n  8. Look up key references if you are looking for a particular topic. This paper may not have what you are looking for, but it 
may build on top of a topic you need to research. In the WEB, you can find guides that list forward references for each 
paper, which may also be useful in your quest. 
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Multi-Core versus Many Core 
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FinFET 
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Review of Pipelining 
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MIPS Pipeline 
n  Five stages, one step per stage 

1.  IF: Instruction fetch from memory 
2.  ID: Instruction decode & register read 
3.  EX: Execute operation or calculate address 
4.  MEM: Access memory operand 
5.  WB: Write result back to register 
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Pipeline Performance 
Single-cycle (Tc= 800ps) 

Pipelined (Tc= 200ps) 
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Pipeline Speedup 
n  If all stages are balanced 

n  i.e., all take the same time 
n  Time between instructionspipelined 

= Time between instructionsnonpipelined 
  Number of stages 

n  If not balanced, speedup is less 
n  Speedup due to increased throughput 

n  Latency (time for each instruction) does not decrease 
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Pipelining and ISA Design 
n  MIPS ISA designed for pipelining 

n  All instructions are 32-bits 
n  Easier to fetch and decode in one cycle 
n  c.f. x86: 1- to 17-byte instructions 

 
n  Few and regular instruction formats 

n  Can decode and read registers in one step 
 

n  Load/store addressing 
n  Can calculate address in 3rd stage, access memory in 4th stage 

 
n  Alignment of memory operands 

n  Memory access takes only one cycle 
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Hazards 
n  Situations that prevent starting the next 

instruction in the next cycle 
n  Structure hazards 

n  A required resource is busy 
n  Data hazard 

n  Need to wait for previous instruction to complete its 
data read/write 

n  Control hazard 
n  Deciding on control action depends on previous 

instruction 
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Structure Hazards 
n  Conflict for use of a resource 
n  In MIPS pipeline with a single memory 

n  Load/store requires data access 
n  Instruction fetch would have to stall for that cycle 

n  Would cause a pipeline “bubble” 

n  Hence, pipelined datapaths require separate 
instruction/data memories 
n  Or separate instruction/data caches 
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Data Hazards 
n  An instruction depends on completion of data 

access by a previous instruction 
n  add  $s0, $t0, $t1 
sub  $t2, $s0, $t3 
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Forwarding (aka Bypassing) 
n  Use result when it is computed 

n  Don’t wait for it to be stored in a register 
n  Requires extra connections in the datapath 
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Load-Use Data Hazard 
n  Can’t always avoid stalls by forwarding 

n  If value not computed when needed 
n  Can’t forward backward in time! 
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Code Scheduling to Avoid Stalls 
n  Reorder code to avoid use of load result in the 

next instruction 
n  C code for A = B + E; C = B + F; 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

lw  $t4, 8($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

stall 

stall 

lw  $t1, 0($t0) 

lw  $t2, 4($t0) 

lw  $t4, 8($t0) 

add $t3, $t1, $t2 

sw  $t3, 12($t0) 

add $t5, $t1, $t4 

sw  $t5, 16($t0) 

11 cycles 13 cycles 
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Control Hazards 
n  Branch determines flow of control 

n  Fetching next instruction depends on branch outcome 
n  Pipeline can’t always fetch correct instruction 

n  Still working on ID stage of branch 

n  In MIPS pipeline 
n  Need to compare registers and compute target early 

in the pipeline 
n  Add hardware to do it in ID stage 
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Stall on Branch 
n  Wait until branch outcome determined before 

fetching next instruction 
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Branch Prediction 
n  Longer pipelines can’t readily determine branch 

outcome early 
n  Stall penalty becomes unacceptable 

n  Predict outcome of branch 
n  Only stall if prediction is wrong 

n  In MIPS pipeline 
n  Can predict branches not taken 
n  Fetch instruction after branch, with no delay 
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MIPS with Predict Not Taken 

Prediction 
correct 

Prediction 
incorrect 
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More-Realistic Branch Prediction 
n  Static branch prediction 

n  Based on typical branch behavior 
n  Example: loop and if-statement branches 

n  Predict backward branches taken 
n  Predict forward branches not taken 

n  Dynamic branch prediction 
n  Hardware measures actual branch behavior 

n  e.g., record recent history of each branch 

n  Assume future behavior will continue the trend 
n  When wrong, stall while re-fetching, and update history 
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Pipeline Summary 

n  Pipelining improves performance by increasing 
instruction throughput 
n  Executes multiple instructions in parallel 
n  Each instruction has the same latency 

n  Subject to hazards 
n  Structure, data, control 

n  Instruction set design affects complexity of 
pipeline implementation 

The BIG Picture 
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MIPS Pipelined Datapath 
§4.6 P

ipelined D
atapath and C

ontrol 

WB 

MEM 

Right-to-left 
flow leads to 
hazards 
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Pipeline registers 
n  Need registers between stages 

n  To hold information produced in previous cycle 
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Pipeline Operation 
n  Cycle-by-cycle flow of instructions through the 

pipelined datapath 
n  “Single-clock-cycle” pipeline diagram 

n  Shows pipeline usage in a single cycle 
n  Highlight resources used 

n  c.f. “multi-clock-cycle” diagram 
n  Graph of operation over time 

n  We’ll look at “single-clock-cycle” diagrams for 
load & store 
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IF for Load, Store, … 
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ID for Load, Store, … 
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EX for Load 
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MEM for Load 
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WB for Load 
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Corrected Datapath for Load 
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EX for Store 
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MEM for Store 
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WB for Store 
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Multi-Cycle Pipeline Diagram 
n  Form showing resource usage 
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Multi-Cycle Pipeline Diagram 
n  Traditional form 
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Single-Cycle Pipeline Diagram 
n  State of pipeline in a given cycle 
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Pipelined Control (Simplified) 
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Pipelined Control 
n  Control signals derived from instruction 

n  As in single-cycle implementation 
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Pipelined Control 
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Data Hazards in ALU Instructions 
n  Consider this sequence: 

 sub $2, $1,$3 
and $12,$2,$5 
or  $13,$6,$2 
add $14,$2,$2 
sw  $15,100($2) 

n  We can resolve hazards with forwarding 
n  How do we detect when to forward? 

§4.7 D
ata H

azards: Forw
arding vs. S

talling 
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Dependencies & Forwarding 
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Detecting the Need to Forward 

n  Pass register numbers along pipeline 
n  e.g., ID/EX.RegisterRs = register number for Rs 

sitting in ID/EX pipeline register 
n  ALU operand register numbers in EX stage 

are given by 
n  ID/EX.RegisterRs, ID/EX.RegisterRt 

n  Data hazards when 
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs 
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt 
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs 
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt 

Fwd from 
EX/MEM 
pipeline reg 

Fwd from 
MEM/WB 
pipeline reg 
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Detecting the Need to Forward 
n  But only if forwarding instruction will write to a 

register! 
n  EX/MEM.RegWrite, MEM/WB.RegWrite 

n  And only if Rd for that instruction is not $zero 
n  EX/MEM.RegisterRd ≠ 0, 

MEM/WB.RegisterRd ≠ 0 
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Forwarding Paths 
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Forwarding Conditions 
n  EX hazard 

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 10 

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
    and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 10 

n  MEM hazard 
n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 

    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 
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Double Data Hazard 
n  Consider the sequence: 

 add $1,$1,$2 
add $1,$1,$3 
add $1,$1,$4 

n  Both hazards occur 
n  Want to use the most recent 

n  Revise MEM hazard condition 
n  Only fwd if EX hazard condition isn’t true 
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Revised Forwarding Condition 
n  MEM hazard 

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
                 and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) 
  ForwardA = 01 

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0) 
    and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0) 
                 and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) 
    and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) 
  ForwardB = 01 
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Datapath with Forwarding 
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Load-Use Data Hazard 

Need to 
stall for 
one cycle 
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Load-Use Hazard Detection 
n  Check when using instruction is decoded in ID 

stage 
n  ALU operand register numbers in ID stage are 

given by 
n  IF/ID.RegisterRs, IF/ID.RegisterRt 

n  Load-use hazard when 
n  ID/EX.MemRead and 

  ((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
   (ID/EX.RegisterRt = IF/ID.RegisterRt)) 

n  If detected, stall and insert bubble 
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How to Stall the Pipeline 
n  Force control values in ID/EX register to 0 

n  EX, MEM and WB do nop (no-operation) 
 

n  Prevent update of PC and IF/ID register 
n  Using instruction is decoded again 
n  Following instruction is fetched again 
n  1-cycle stall allows MEM to read data for lw 

n  Can subsequently forward to EX stage 
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Stall/Bubble in the Pipeline 

Stall 
inserted 
here 
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Stall/Bubble in the Pipeline 

Or, more 
accurately
… 
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Datapath with Hazard Detection 
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Stalls and Performance 

n  Stalls reduce performance 
n  But are required to get correct results 

n  Compiler can arrange code to avoid hazards and 
stalls 
n  Requires knowledge of the pipeline structure 

The BIG Picture 
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Branch Hazards 
n  If branch outcome determined in MEM 

§4.8 C
ontrol H

azards 

PC 

Flush these 
instructions 
(Set control 
values to 0) 



66 Chapter 4 — The Processor — 66 

Reducing Branch Delay 
n  Move hardware to determine outcome to ID 

stage 
n  Target address adder 
n  Register comparator 

n  Example: branch taken 
 36:  sub  $10, $4, $8 
40:  beq  $1,  $3, 7 
44:  and  $12, $2, $5 
48:  or   $13, $2, $6 
52:  add  $14, $4, $2 
56:  slt  $15, $6, $7 
     ... 
72:  lw   $4, 50($7) 
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Example: Branch Taken 
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Example: Branch Taken 
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Data Hazards for Branches 
n  If a comparison register is a destination of 2nd or 

3rd preceding ALU instruction 

… 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

add $4, $5, $6 

add $1, $2, $3 

beq $1, $4, target 

n  Can resolve using forwarding 
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Data Hazards for Branches 
n  If a comparison register is a destination of 

preceding ALU instruction or 2nd preceding load 
instruction 
n  Need 1 stall cycle 

beq stalled 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID 

ID EX MEM WB 

add $4, $5, $6 

lw  $1, addr 

beq $1, $4, target 
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Data Hazards for Branches 
n  If a comparison register is a destination of 

immediately preceding load instruction 
n  Need 2 stall cycles 

beq stalled 

IF ID EX MEM WB 

IF ID 

ID 

ID EX MEM WB 

beq stalled 

lw  $1, addr 

beq $1, $0, target 
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Dynamic Branch Prediction 
n  In deeper and superscalar pipelines, branch 

penalty is more significant 
n  Use dynamic prediction 

n  Branch prediction buffer (aka branch history table) 
n  Indexed by recent branch instruction addresses 
n  Stores outcome (taken/not taken) 
n  To execute a branch 

n  Check table, expect the same outcome 
n  Start fetching from fall-through or target 
n  If wrong, flush pipeline and flip prediction 
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1-Bit Predictor: Shortcoming 
n  Inner loop branches mispredicted twice! 

outer: … 
       … 
inner: … 

       … 

       beq …, …, inner 
       … 
       beq …, …, outer 

n  Mispredict as taken on last iteration of 
inner loop 

n  Then mispredict as not taken on first 
iteration of inner loop next time around 
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2-Bit Predictor 
n  Only change prediction on two successive 

mispredictions 
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Calculating the Branch Target 
n  Even with predictor, still need to calculate the 

target address 
n  1-cycle penalty for a taken branch 

n  Branch target buffer 
n  Cache of target addresses 
n  Indexed by PC when instruction fetched 

n  If hit and instruction is branch predicted taken, can fetch 
target immediately 



76 Chapter 4 — The Processor — 76 

Exceptions and Interrupts 
n  “Unexpected” events requiring change 

in flow of control 
n  Different ISAs use the terms differently 

n  Exception 
n  Arises within the CPU 

n  e.g., undefined opcode, overflow, syscall, … 

n  Interrupt 
n  From an external I/O controller 

n  Dealing with them without sacrificing 
performance is hard 

§4.9 E
xceptions 
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Handling Exceptions 
n  In MIPS, exceptions managed by a System 

Control Coprocessor (CP0) 
n  Save PC of offending (or interrupted) instruction 

n  In MIPS: Exception Program Counter (EPC) 
n  Save indication of the problem 

n  In MIPS: Cause register 
n  We’ll assume 1-bit 

n  0 for undefined opcode, 1 for overflow 

n  Jump to handler at 8000 00180 
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Handler Actions 
n  Read cause, and transfer to relevant handler 
n  Determine action required 
n  If restartable 

n  Take corrective action 
n  use EPC to return to program 

n  Otherwise 
n  Terminate program 
n  Report error using EPC, cause, … 
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Exceptions in a Pipeline 
n  Another form of control hazard 
n  Consider overflow on add in EX stage 

add $1, $2, $1 

n  Prevent $1 from being clobbered 
n  Complete previous instructions 
n  Flush add and subsequent instructions 
n  Set Cause and EPC register values 
n  Transfer control to handler 

n  Similar to mispredicted branch 
n  Use much of the same hardware 
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Speculation 
n  “Guess” what to do with an instruction 

n  Start operation as soon as possible 
n  Check whether guess was right 

n  If so, complete the operation 
n  If not, roll-back and do the right thing 

n  Common to static and dynamic multiple issue 
n  Examples 

n  Speculate on branch outcome 
n  Roll back if path taken is different 

n  Speculate on load 
n  Roll back if location is updated 
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Compiler/Hardware Speculation 
n  Compiler can reorder instructions 

n  e.g., move load before branch 
n  Can include “fix-up” instructions to recover from 

incorrect guess 
n  Hardware can look ahead for instructions to 

execute 
n  Buffer results until it determines they are actually 

needed 
n  Flush buffers on incorrect speculation 



82 Chapter 4 — The Processor — 82 

Static Multiple Issue 
n  Compiler groups instructions into “issue packets” 

n  Group of instructions that can be issued on a single cycle 
n  Determined by pipeline resources required 

n  Think of an issue packet as a very long instruction 
n  Specifies multiple concurrent operations 
n  ⇒ Very Long Instruction Word (VLIW) 
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Scheduling Static Multiple Issue 
n  Compiler must remove some/all hazards 

n  Reorder instructions into issue packets 
n  No dependencies with a packet 
n  Possibly some dependencies between packets 

n  Varies between ISAs; compiler must know! 

n  Pad with nop if necessary 
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MIPS with Static Dual Issue 
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MIPS with Static Dual Issue 
n  Two-issue packets 

n  One ALU/branch instruction 
n  One load/store instruction 
n  64-bit aligned 

n  ALU/branch, then load/store 
n  Pad an unused instruction with nop 

Address Instruction type Pipeline Stages 

n ALU/branch IF ID EX MEM WB 

n + 4 Load/store IF ID EX MEM WB 

n + 8 ALU/branch IF ID EX MEM WB 

n + 12 Load/store IF ID EX MEM WB 

n + 16 ALU/branch IF ID EX MEM WB 

n + 20 Load/store IF ID EX MEM WB 
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Hazards in the Dual-Issue MIPS 
n  More instructions executing in parallel 
n  EX data hazard 

n  Forwarding avoided stalls with single-issue 
n  Now can’t use ALU result in load/store in same packet 

n  add  $t0, $s0, $s1 
load $s2, 0($t0) 

n  Split into two packets, effectively a stall 

n  Load-use hazard 
n  Still one cycle use latency, but now two instructions 

n  More aggressive scheduling required 
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Scheduling Example 
n  Schedule this for dual-issue MIPS 

Loop: lw   $t0, 0($s1)      # $t0=array element 
      addu $t0, $t0, $s2    # add scalar in $s2 
      sw   $t0, 0($s1)      # store result 
      addi $s1, $s1,–4      # decrement pointer 
      bne  $s1, $zero, Loop # branch $s1!=0 

ALU/branch Load/store cycle 
Loop: nop lw   $t0, 0($s1) 1 

addi $s1, $s1,–4 nop 2 

addu $t0, $t0, $s2 nop 3 

bne  $s1, $zero, Loop sw   $t0, 4($s1) 4 

n  IPC = 5/4 = 1.25 (c.f. peak IPC = 2) 
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Loop Unrolling 
n  Replicate loop body to expose more parallelism 

n  Reduces loop-control overhead 

n  Use different registers per replication 
n  Called “register renaming” 
n  Avoid loop-carried “anti-dependencies” 

n  Store followed by a load of the same register 
n  Aka “name dependence”  

n  Reuse of a register name 
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Loop Unrolling Example 

n  IPC = 14/8 = 1.75 
n  Closer to 2, but at cost of registers and code size 

ALU/branch Load/store cycle 
Loop: addi $s1, $s1,–16 lw   $t0, 0($s1) 1 

nop lw   $t1, 12($s1) 2 

addu $t0, $t0, $s2 lw   $t2, 8($s1) 3 

addu $t1, $t1, $s2 lw   $t3, 4($s1) 4 

addu $t2, $t2, $s2 sw   $t0, 16($s1) 5 

addu $t3, $t4, $s2 sw   $t1, 12($s1) 6 

nop sw   $t2, 8($s1) 7 

bne  $s1, $zero, Loop sw   $t3, 4($s1) 8 
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Dynamic Multiple Issue 
n  “Superscalar” processors 
n  CPU decides whether to issue 0, 1, 2, … each 

cycle 
n  Avoiding structural and data hazards 

n  Avoids the need for compiler scheduling 
n  Though it may still help 
n  Code semantics ensured by the CPU 
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Speculation 
n  Predict branch and continue issuing 

n  Don’t commit until branch outcome determined 

n  Load speculation 
n  Avoid load and cache miss delay 

n  Predict the effective address 
n  Predict loaded value 
n  Load before completing outstanding stores 
n  Bypass stored values to load unit 

n  Don’t commit load until speculation cleared 
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Why Do Dynamic Scheduling? 
n  Why not just let the compiler schedule code? 
n  Not all stalls are predicable 

n  e.g., cache misses 

n  Can’t always schedule around branches 
n  Branch outcome is dynamically determined 

n  Different implementations of an ISA have different 
latencies and hazards 
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Does Multiple Issue Work? 

n  Yes, but not as much as we’d like 
n  Programs have real dependencies that limit ILP 
n  Some dependencies are hard to eliminate 

n  e.g., pointer aliasing 
n  Some parallelism is hard to expose 

n  Limited window size during instruction issue 
n  Memory delays and limited bandwidth 

n  Hard to keep pipelines full 
n  Speculation can help if done well 

The BIG Picture 
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Power Efficiency 
n  Complexity of dynamic scheduling and 

speculations requires power 
n  Multiple simpler cores may be better 

Microprocessor Year Clock Rate Pipeline 
Stages 

Issue 
width 

Out-of-order/ 
Speculation 

Cores Power 

i486 1989 25MHz 5 1 No 1 5W 

Pentium 1993 66MHz 5 2 No 1 10W 

Pentium Pro 1997 200MHz 10 3 Yes 1 29W 

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W 

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W 

Core 2006 2930MHz 14 4 Yes 2 75W 

UltraSparc III 2003 1950MHz 14 4 No 1 90W 

UltraSparc T1 2005 1200MHz 6 1 No 8 70W 
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The Opteron X4 Microarchitecture 
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The Opteron X4 Pipeline Flow 
n  For integer operations 

n  FP is 5 stages longer 
n  Up to 106 RISC-ops in progress 

n  Bottlenecks 
n  Complex instructions with long 

dependencies 

n  Branch mispredictions 

n  Memory access delays 
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Fallacies 
n  Pipelining is easy (!) 

n  The basic idea is easy 
n  The devil is in the details 

n  e.g., detecting data hazards 

n  Pipelining is independent of technology 
n  So why haven’t we always done pipelining? 
n  More transistors make more advanced techniques feasible 
n  Pipeline-related ISA design needs to take account of 

technology trends 
n  e.g., predicated instructions 

§4.13 Fallacies and P
itfalls 


