
eetimes

1)  IBM Fabrication
2)  Reneseas: big/little
3)  Reducing AMD power with gating
4)  Flash on DDR4

DARPA UPSIDE

Chapter 5: Multiprocessors	

 4	

Chapter 5: Multiprocessors
 High-Performance Computer Architecture

Prof. Ben Lee
Oregon State University

School of Electrical Engineering and
Computer Science

Chapter 5: Multiprocessors	

 5	

Chapter Outline
•  Introduction
•  Parallel Computers
•  Shared-Memory Programming

•  Synchronization
•  Cache Coherence

Chapter 5: Multiprocessors	

 6	

Introduction
•  Growth in data-intensive applications.

–  Data bases, file servers, …

•  Growing interest in servers, server performance.
•  Increasing desktop performance less important.

–  Outside of graphics

•  Improved understanding in how to use
multiprocessors effectively.
–  Especially servers where significant natural TLP

•  Advantage of leveraging design investment by
replication => CMPs or Multicores.
–  Rather than unique design

Chapter 5: Multiprocessors	

 7	

Another Reason

Chapter 5: Multiprocessors	

 8	

Limit to Processor Performance

•  Complexity of exploiting ILP.
–  Difficult to support large instruction window and number of

in-flight instructions.

•  On-chip wires are becoming slower than logic gates.
–  Only a fraction of the die will be reachable within a single

clock cycle.

•  Cooling and packaging will be a real challenge due
heat release.

•  Memory and processor performance gap will continue
to be a challenge.

Chapter 5: Multiprocessors	

 10	

Multicores are Coming

AMD Opteron
Dual Core

Intel Montecito
1.7 Billion transistors

Dual Core IA/64
Intel Tanglewood
Dual Core IA/64

Intel Pentium Extreme
3.2GHz Dual Core

Intel Tejas & Jayhawk
Unicore (4GHz P4)

Intel Dempsey
Dual Core Xeon

Intel Pentium D
(Smithfield)

Cancelled

Intel Yonah
Dual Core Mobile

IBM Power 6
Dual Core

IBM Power 4 and 5
Dual Cores Since 2001

IBM Cell
Scalable Multicore

Sun Olympus and Niagara
8 Processor Cores

… 1H 2005 1H 2006 2H 2006 2H 2005 2H 2004

Already Here!

Chapter 5: Multiprocessors	

 11	

SS, MT, SMT, & MP

SuperScalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

t

Chapter 5: Multiprocessors	

 12	

What is a Multicore?

PE PE

$$ $$

Memory

PE PE

$$

Memory

$$

Basic Multicore
IBM Power5

Traditional
Multiprocessor

Chapter 5: Multiprocessors	

 13	

Chapter 5: Multiprocessors	

 14	

Chapter 5: Multiprocessors	

 15	

Chapter 5: Multiprocessors	

 16	

Chapter 5: Multiprocessors	

 17	

Chapter 5: Multiprocessors	

 18	

Knights Corner

Chapter 5: Multiprocessors	

 19	

Chapter 5: Multiprocessors	

 20	

Chapter 5: Multiprocessors	

 21	

Chapter 5: Multiprocessors	

 23	

Why Move to Multicores

•  Many issues with scaling a unicore
–  Power
–  Efficiency
–  Complexity
–  Wire Delay
–  Diminishing returns from optimizing a single

instruction stream

Chapter 5: Multiprocessors	

 24	

Impact of Multicores
•  How much data can be

communicated between two cores?
•  What changed?

–  Number of Wires
•  I/O is the true bottleneck
•  On-chip wire density is very high

–  Clock rate
•  I/O is slower than on-chip

–  Multiplexing
•  No sharing of pins

•  Impact on programming model?
–  Massive data exchange is possible
–  Data movement is not the

bottleneck
•  Locality is not that important

32 Giga bits/sec

10,000X

~300 Tera bits/sec

Chapter 5: Multiprocessors	

 25	

Impact of Multicores

•  How long does it take for a
round trip communication?

•  What changed?
–  Length of wire

•  Very short wires are faster

– Pipeline stages
•  No multiplexing
•  On-chip is much closer

•  Impact on programming model?
–  Ultra-fast synchronization
–  Can run real-time apps on multiple

cores

50X

~200 Cycles ~4 cycles

Chapter 5: Multiprocessors	

 26	

Chapter Outline
•  Introduction
•  Parallel Computers
•  Shared-Memory Programming

•  Synchronization
•  Cache Coherence

Chapter 5: Multiprocessors	

 27	

Parallel Computers
•  “A parallel computer is a collection of processing

elements that cooperate and communicate to solve
large problems fast.”

•  Taxonomy of parallel computers:
Parallel Architectures

Shared-memory	

Multiprocessor	

Message-passing	

Multicomputer	

UMA	

(SMP)	

NUMA

Clustered	

SMPs

DSM	

(SC-NUMA)	

COW MPP

CC-NUMA NCC-NUMA COMA

Chapter 5: Multiprocessors	

 28	

Shared-Memory Multiprocessors

CPU CPU CPUCPU

L2 Cache L2 Cache L2 Cache L2 Cache

Bus
Arbiter

Interface

DRAM

Local
Bus

Controller

LAN
Interface

SCSI
Controller

Expansion
Bus

Controller

Hard drives
CD ROMs

Local Bus

Processor Bus

Other slow
I/O devices

Chapter 5: Multiprocessors	

 29	

Issues in Multiprocessors
•  Programming

–  Need to explicitly define parallelism
•  Hardware

–  Interconnection
•  Bus
•  Network

–  Synchronization
•  Test-and-set
•  Barrier synchronization
•  Fetch and add

–  Cache Coherence
•  Snoopy protocols
•  Directory-based

Chapter 5: Multiprocessors	

 30	

Chapter Outline
•  Introduction
•  Parallel Computers
•  Shared-Memory Programming

•  Synchronization
•  Cache Coherence

Chapter 5: Multiprocessors	

 31	

Shared-Memory Programming
•  Many vendors have implemented their own proprietary versions

of threads.
•  A standardized C language threads programming interface,

POSIX Threads or Pthreads
•  Threaded applications offer potential performance gains and

practical advantages:
–  Overlapping CPU work with I/O
–  Priority/real-time scheduling
–  Asynchronous event handling
–  Parallelization on SMPs

•  Pthreads provide Over 60 routines for
–  Thread management - thread create, join, schedule, etc.
–  Mutexes - mutual exclusion
–  Conditional variables - provides communication between threads

Chapter 5: Multiprocessors	

 32	

Threads

Unix Process Threads within a process

Chapter 5: Multiprocessors	

 33	

Thread Creation
main()

{
 for (i=0;i<=n;i++)
 pthread_create(&thread_id[i],NULL,f,(void *)&args[i]);
 ...
 for (i=0;i<=n;i++)
 pthread_join(thread_id[i], NULL);

}

void *f(void *param)
{

 ...
 do something
 ...

…

main()

f() f() f()

…

pthread_create()

pthread_join()

Thread
Create

Thread
Scheduling

Priority Queue

Chapter 5: Multiprocessors	

 34	

Matrix Multiply
/***
Simple Multi-threaded matrix multiplication
compile with cc -mt -xO3 -D_SOLARIS_2 thmm.c -lpthread
or
cc -mt -xO3 -xtarget=ultra2 -xcache=16/32/1:4096/64/1 -D_SOLARIS_2

-xunroll=4 thmm.c -lpthread
***/

#include <stdio.h>
#include <pthread.h>
#include <sys/time.h>
#ifdef _SOLARIS_2
#include <thread.h>
#endif

#define N 500
#define NTHREADS 100
int jmax = N/NTHREADS;

/* function prototypes */
void* matMult(void*);

/* global matrix data */
double a[N][N], b[N][N], c[N][N];
int count=0;

void main(void)
{ pthread_t thr[NTHREADS];
 int i, j;

 #ifdef _SOLARIS_2
 thr_setconcurrency(NTHREADS);
 #endif

 for(i = 0; i < NTHREADS; ++i) {
 pthread_create(&thr[i], NULL, matmult, (void*)i);
 }
 for(i = 0; i < NTHREADS; ++i) {
 pthread_join(thr[i], NULL);
 }
}

void* matmult(void* thread_id)
{ int i, j, k;

 int offset, column;
 offset = jmax*(int)thread_id;

 for(j = 0; j < jmax; j++) {
 column = j+offset;
 for(i = 0; i < N; i++) {
 for(k = 0; k < N; k++) {
 c[i][column] = c[i][column] + a[i][k]*b[k][column];
 }
 }
 }

 return NULL;
}

Chapter 5: Multiprocessors	

 35	

Matrix Multiply

jmax=N/NTHREADS

X =

void* matmult(void* thread_id)
{ int i, j, k;

 int offset, column;
 offset = jmax*(int)thread_id;

 for(j = 0; j < jmax; j++) {
 column = j+offset;
 for(i = 0; i < N; i++) {
 for(k = 0; k < N; k++) {
 c[i][column] = c[i][column] + a[i][k]*b[k][column];
 }
 }
 }

 return NULL;
}

Chapter 5: Multiprocessors	

 36	

Chapter Outline
•  Introduction
•  Parallel Computers
•  Shared-Memory Programming

•  Synchronization
•  Cache Coherence

Chapter 5: Multiprocessors	

 37	

Synchronization
•  Synchronization enforces correct sequencing of

processors and ensures mutually exclusive access to
shared writable data.
–  Sequence control
–  Access control

Chapter 5: Multiprocessors	

 38	

Sequence Control
•  Ensures correct timing among cooperating threads/

processes.
–  e.g., barrier synchronization

…

A

B1 B2 Bn

C

Barrier

Chapter 5: Multiprocessors	

 39	

Access Control
/* Savings to checking transfer */!
!
struct account {!

!int checking;!
!int savings;!

};!
!
void !
savings_to_checking(struct account *ap,

int amount)!
{!

!ap->savings -=amount;!
!ap->checking += amount;!

}!
!
int !
total_balance(struct account *ap)!
{!

!int balance;!
!balance = ap->checking + ap->saving;!
!return balance;!

}

balance = ap->checking + !
!ap->saving;!

ap->savings -=amount;!

ap->checking += amount!

return balance;!

Thread 1! Thread 2!

Wrong balance!!

Checking Savings

Thread 1 Thread 2

Race conditions!

Requires mutual exclusion between
saving_to_checking and
total_balance!

Critical
Section

Critical
Section

Chapter 5: Multiprocessors	

 40	

Pthreads Synchronization
•  Need a synchronization variable allocated in memory.

–  Lock/unlock
•  All threads need to check the synchronization

variable.
–  If in use, wait until it becomes available.

•  Pthread uses mutexes (mutual exclusions):
–  Creating and destroying a mutex

•  pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER;!

•  int pthread_mutex_init!
•  int pthread_mutex_destroy

–  Locking and unlocking a mutex!
•  int pthread_mutex_lock!
•  int pthread_mutex_unlock!

Chapter 5: Multiprocessors	

 41	

Previous Example
/* Savings to checking transfer */!
!

struct account {!
!int checking;!
!int savings;!

};!
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;!
!
void !
savings_to_checking(struct account *ap, int

amount)!
{!

!pthread_mutex_lock(&lock);!
!ap->savings -=amount;!
!ap->checking += amount;!
!pthread_mutex_unlock(&lock);!

}!
!
int !
total_balance(struct account *ap)!
{!

!int balance;!
!pthread_mutex_lock(&lock);!
!balance = ap->checking + ap->saving;!
!pthread_mutex_unlock(&lock);!
!return balance;!

}!

balance = ap->checking + !
!ap->saving;!

ap->savings -=amount;!

ap->checking += amount;!

return balance;!

Thread 1! Thread 2!

Critical
Section

Critical
Section Checking Savings

Thread 1 Thread 2

lock

Chapter 5: Multiprocessors	

 42	

Synchronization Primitives
•  pthread_mutex_lock and _unlock are high-level

function calls.
•  At some point within these calls, lock has to be read-

test/modify-write atomically.
•  Older (CISC-based) multiprocessors provided

synchronization primitives:
–  Test-and-Set
–  Fetch-and-Add
–  Compare-and-Swap
–  Exchange (x86)

Chapter 5: Multiprocessors	

 43	

Test-and-Set
•  Test-and-Set serializes access to a CS by forcing only one of

several threads trying to access the CS. A thread is allowed to
enter the CS only if Test-and-Set observes that lock =0. !

!
!Test-and-Set(lock)!
!{ !temp ← lock;!
!! !lock ← 1;!
!! !return temp}!
!!
!/* Example code!*/!
!loop: !lock=Test-and-Set(lock)!
!! ! !if lock==1 then goto loop
 {!
!! ! ! !Critical Section!
!! ! !}
!! ! !Reset(lock){lock ← 0}	

Chapter 5: Multiprocessors	

 44	

Fetch-and-Add
•  Fetch-and-Add is more power than Test-and-Set in the sense that it

allows arbitrary number of threads to share a counter. Each thread
after executing Fetch-and-Add will acquire a unique number, which can
then be used in number of different ways.	

!
!Fetch-and-Add(x,a)!
!{ !temp ← x;!
!! !x← temp+a;!
!! !return temp}!

!/* Example code!*/!
!count = 1;!
!while (count <= n){!
!! !count=fetch&add(i,1);!
!! !if(count <= n)!
!! ! !{/* execute iteration i of the loop */}!
!}!

Chapter 5: Multiprocessors	

 45	

Hardware Support for Sync
•  Modern processors are RISC-based.

–  RISC ISAs do not allow read-test/modify-write operations to
be performed in a single instruction.

–  Need to provide special instructions.
–  Exception: x86 (uses xchg)

•  Solution: A pair of special load and store instructions.
–  MIPS: ll (load-linked or load-locked) and sc (store-

conditional)
–  PowerPC: lwarx (load word and reserve indexed) and

stwcx. (store word conditional indexed)

Chapter 5: Multiprocessors	

 46	

MIPS Support for Sync
•  MIPS processor provides LL-SC pair:

–  ll (load-linked or load-locked) - Loads a value and stores
the address of the value in a link register. If an interrupt
occurs (e.g., context switch), or if the cache block matching
the address in the link register is invalidated (e.g., by
another sc), the link register is cleared.

–  sc (store-conditional) - Stores a value only if address
matches the address in the link register, and is valid.
Returns 1 if it succeeds and 0 otherwise.

Chapter 5: Multiprocessors	

 47	

MIPS Support for Sync
; Example of Test-and-Set implementation!
lockit: !ll !R2, 0(R1) !; load-linked!

! !bnez !R2, lockit !; not available => spin!

! !daddui !R2, R0, #1 !; locked value!
! !sc !R2, 0(R1) !; conditional store!
! !beqz !R2, lockit !; branch if SC fails!

!
!
!

; Example of Fetch-and-Add implementation
try: !ll !R2, 0(R1) !; load-linked!

! !addi !R3, R2, #1 !; increment!
! !sc !R23, 0(R1) !; store conditional!
! !beqz !R3, try ! !; branch if store fails

Chapter 5: Multiprocessors	

 48	

MIPS Support for Sync
•  Example: A parallel loop of n iterations

!count = 1;!
!while (count <= n){!
! !count=fetch&add(i,1);!
! !if(count <= n)!
! ! !{/* execute iteration i of the loop */}!
!}!

 Processor 1 Processor 2
 fetch i
 fetch i
 store i
 store i

•  Since the store comes after another store, the reservation is no
longer intact therefore store fails.	

t

Chapter 5: Multiprocessors	

 49	

Chapter Outline
•  Introduction
•  Parallel Computers
•  Shared-Memory Programming

•  Synchronization
•  Cache Coherence

Chapter 5: Multiprocessors	

 50	

P0 P1

Bus

Shared
Memory

Caches

load load

store
 x → x’

x → x’

Cache-Coherence Problem

x

P0 P1

Bus

Shared
Memory

Caches

load load

store
 x → x’

x

 x

Write-through Write-back

Sharing of Writable Data

1 2

3

1 2

3

Chapter 5: Multiprocessors	

 51	

Bus

Shared
Memory

Caches

P0 P1

load load

store
 x → x’

x

Cache-Coherence Problem

x

Write-back

Process Migration

Process A Process A
Cache miss

Bus

Shared
Memory

Caches

P0 P1

load load

 x → x’

x → x’	

 x

Process A Process A
Store

1 2

3
4

5
Migrate

1 2

3 Migrate
4

5 Migrate
Gets old	

Value! 6

Write-through

Chapter 5: Multiprocessors	

 52	

P0 P1

Bus

Shared
Memory

Caches

load load

store
 x → x’

x

Cache-Coherence Problem

Write-back

I/O Activity

1 3

2

I/O

I/O devices, such as DMA,
will access memory directly.
However, for this to work, I/O
must read memory after it is
written back.	

Chapter 5: Multiprocessors	

 53	

Cache Coherence for Write-Through

I

V

PrRd/BusRd

PrRd/—

PrWr/BusWr

BusWr/—

Processor-initiated transactions

Bus-snooper -initiated transactions

PrWr/BusWr

•  All processors monitor (snoop) the bus
for writes.

•  Diagram is based on no-write allocate
policy, where writes update the memory
and update the block only if it is present
and in the valid state. The other option
is write-allocate.

•  If a write is made, an invalidate signal
is generated on the bus, and other
cache that have this block are
invalidated (called write-invalidate
protocol).	

Chapter 5: Multiprocessors	

 54	

CC for Write-Back: MSI Protocol

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

States
•  Invalid (I)
•  Shared (S): one or more
•  Dirty or Modified (M)
Processor Events:
•  PrRd (read)
•  PrWr (write)
Bus Transactions
•  BusRd: Request for a copy with no

intent to modify
•  BusRdX: Request for a copy with

intent to modify. Invalidates all other
blocks.

•  BusWB: Updates memory
Misc.
•  Flush: Cache writes block on bus.

Memory and requesting cache both
pickup the block.

Chapter 5: Multiprocessors	

 55	

Some Issues:
•  Flush requires cache-to-cache transfer, i.e., both memory and the

requesting cache pick up the block.
•  Writing into a shared block (S → M): Uses BusRdX to acquire exclusive

ownership. But, the read block from MM (or another cache) can be
ignored since the block is already in the cache (S state). To reduce
traffic on the bus, a new transaction, called bus upgrade or BusUpgr,
can be used which simply invalidates other copies but does not cause
MM (or another cache) to respond with the data for the block.

•  When a processor reads in and modifies a data item (read followed by
a write), two bus transactions are generated. First is BusRd (I → S)
and then followed by BusRdX or BusUpgr (S → M). By adding a state
that indicates that the block is the only copy but not modified, we can
eliminate invalidation (BusRdX or BusUpgr), thus reducing the bus
traffic. This new state is called exclusive-clean.

CC for Write-Back: MSI Protocol

Chapter 5: Multiprocessors	

 56	

Cache-to-Cache Transfer

P0 P
1

Bus

Shared
Memory

Caches x

Cache-to-cache transfer (flush)

BusRdX: M→I 	

BusRd: M→S	

Only Copy	

x

P0 P1

Bus

Shared
Memory

Caches
BusRdX or BusRd

 x
PrWr or PrRd	

Only Copy	

PrWr: I→M	

PrRd: I→S	

Flush requires cache-to-cache transfer, i.e., both memory and the
requesting cache pick up the block.

x → x’

Chapter 5: Multiprocessors	

 57	

Writing into Shared Block

P0 P1

Bus

Shared
Memory

Caches x→x’	

 x
BusUpgr: S→I 	

x

P0 P1

Bus

Shared
Memory

Caches
BusRdX

 x
PrWr	

 PrWr: S→M	

x

x

Since block already in cache, uses bus upgrade or
BusUpgr instead BusRdX to acquire exclusive
ownership. Reduces traffic on the bus.

BusUpgr

If it was BusRdX, memory would have had
to first respond by return x and the
invalidate itself!

Chapter 5: Multiprocessors	

 58	

Exclusive-Clean State

P0 P1

Bus

Shared
Memory

Caches x→x’	

x

P0 P1

Bus

Shared
Memory

Caches
BusRd

PrRd	

PrWr: E→M	

x

When a processor reads in (BusRd (I → S)) and modifies a data item
(BusRdX or BusUpgr (S → M)), two bus transactions are generated. By
adding a state that indicates that the block is the only copy but not
modified, we can eliminate invalidation (BusRdX or BusUpgr), thus
reducing the bus traffic.

x

PrWr	

BusRdX or 	

BusUpgr

PrRd: I→E	

Chapter 5: Multiprocessors	

 59	

PrWr/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush!

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush!

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S)

•  MESI eliminates the need to invalidate
when writing in the exclusive state. Also
refer to as the Illinois protocol.

–  Modified - Main memory does not have
an up-to-date copy of this cache line. No
other cache has a copy of this sector.

–  Exclusive - Main memory has an up-to-
date copy of this cache line. No other
caches hold the line.

–  Shared - Main memory has an up-to-date
copy of this cache line. Other caches
may also have an up-to-date copy.

–  Invalid - This cache does not have a valid
copy of the sector.	

MESI Protocol

BusUpgr

Chapter 5: Multiprocessors	

 60	

•  Transition I → S or I → E depends on whether any other caches
have this block. This is detected by a shared signal S.
BusRd(S’) means S was unasserted, while BusRd(S) means S
was asserted.

•  From state E, either BusRd (E → S) or BusRdX (E → I) causes
the block to be flushed onto the bus if cache-to-cache transfer is
used.

•  From state S, either BusRd or BusRdX causes one of the
processors to flushed the block onto the bus. Since many
caches can have the block, a priority scheme is used. Flush’
simply indicates this operation is only performed by the cache
responsible for providing the block. No other caches are
involved in the process.

Some Issues

Chapter 5: Multiprocessors	

 61	

Snoop-Based CC Design

Bus-side
Controller

Processor
side

Controller
Cache Data RAM Tag & State

Processor Tag & State
Snoop

Tag

Data Buffer

Comparator

Address Command Command Address Snoop
State

Comparator

Processor

Address Command

Data

Write-Back Buffer

• Assumption:
– A single level cache per processor
– Transactions on the bus is atomic.

• Cache controller and Tag design:
– Two cache controllers.
– Either dual-ported RAM or duplications of tags

and state for every block.

To
Controller

To
Controller

System Bus

Chapter 5: Multiprocessors	

 62	

•  Bus-side controller for each cache checks the
address against its tags, and the collective result of
the snoop from all caches must be reported on the
bus.

•  Requesting cache controller needs to know where
the requested block is in other processors’ cache so
that it can decide to load the block in exclusive (E)
state or shared (S) state; and

•  Memory system needs to know whether any cache
has the block in modified (M) state, in which case the
memory need not respond.

Reporting Snoop Results

Chapter 5: Multiprocessors	

 63	

•  Write-backs require two bus transactions (one for
incoming and the other for outgoing (modified or dirty)
block that is being replaced).

•  To speed up the write-back process, a write-back
buffer is used to temporarily store the block being
replaced.

•  Before write-back is complete, it’s possible to see a
bus transaction containing the address of the block
being written back. Thus, the controller must supply
the data from the write buffer and cancel its earlier
pending request to the bus for a write back. This will
require an address comparator to be added to snoop
on the write-back buffer.

Dealing with Write-backs

Chapter 5: Multiprocessors	

 64	

Non-Atomic State Transitions

•  Assumption thus far was state transition was atomic!
–  Bus has to arbitrate among multiple requests.
– Request and response is done using split-transaction

P0 P1

Bus

Shared
Memory

Caches
BusRdX

PrWr: S→M	

x

x→x’	

 x→x’	

PrWr: S→M	

BusRdX
Arbitration!

P0 P1

Bus

Shared
Memory

Caches
BusRdX

PrWr: S→M→I	

x

x→x’	

PrWr: S→M	

BusRdX
P1 wins!

Chapter 5: Multiprocessors	

 65	

Transient States for Bus Acquisition

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush!

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I ♦ M

S ♦ M

PrWr/
BusReq

BusRdX/Flush!

I ♦ S,E

BusRdX/Flush

BusRdX/Flush!

BusGrant/
BusRd (S) BusRd/Flush

