
eetimes 

1)  IBM Fabrication 
2)  Reneseas: big/little 
3)  Reducing AMD power with gating 
4)  Flash on DDR4 
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Introduction 
•  Growth in data-intensive applications. 

–  Data bases, file servers, …  

•  Growing interest in servers, server performance. 
•  Increasing desktop performance less important.  

–  Outside of graphics 

•  Improved understanding in how to use 
multiprocessors effectively.  
–  Especially servers where significant natural TLP 

•  Advantage of leveraging design investment by 
replication => CMPs or Multicores. 
–  Rather than unique design 
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Another Reason 
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Limit to Processor Performance 

•  Complexity of exploiting ILP. 
–  Difficult to support large instruction window and number of 

in-flight instructions. 

•  On-chip wires are becoming slower than logic gates. 
–  Only a fraction of the die will be reachable within a single 

clock cycle. 

•  Cooling and packaging will be a real challenge due 
heat release. 

•  Memory and processor performance gap will continue 
to be a challenge. 
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Multicores are Coming 

AMD Opteron 
Dual Core 

Intel Montecito 
1.7 Billion transistors 

Dual Core IA/64 
Intel Tanglewood 
Dual Core IA/64 

Intel Pentium Extreme 
3.2GHz Dual Core 

Intel Tejas & Jayhawk 
Unicore (4GHz P4) 

Intel Dempsey 
Dual Core Xeon 

Intel Pentium D 
(Smithfield) 

Cancelled 

Intel Yonah 
Dual Core Mobile 

IBM Power 6 
Dual Core 

IBM Power 4 and 5 
Dual Cores Since 2001 

IBM Cell  
Scalable Multicore 

Sun Olympus and Niagara 
8 Processor Cores  

… 1H 2005 1H 2006 2H 2006 2H 2005 2H 2004 

Already Here! 
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SS, MT, SMT, & MP 

SuperScalar Fine-Grained Coarse-Grained Multiprocessing 
Simultaneous 
Multithreading 

Thread 1 
Thread 2 

Thread 3 
Thread 4 

Thread 5 
Idle slot 

t 
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What is a Multicore? 

PE PE 

$$ $$ 

Memory 

PE PE 

$$ 

Memory 

$$ 

Basic Multicore  
IBM Power5 

Traditional  
Multiprocessor 



Chapter 5: Multiprocessors	

 13	





Chapter 5: Multiprocessors	

 14	





Chapter 5: Multiprocessors	

 15	





Chapter 5: Multiprocessors	

 16	





Chapter 5: Multiprocessors	

 17	





Chapter 5: Multiprocessors	

 18	



Knights Corner 
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Why Move to Multicores 

•  Many issues with scaling a unicore 
–  Power 
–  Efficiency  
–  Complexity 
–  Wire Delay 
–  Diminishing returns from optimizing a single 

instruction stream 
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Impact of Multicores 
•  How much data can be 

communicated between two cores? 
•  What changed? 

–  Number of Wires 
•  I/O is the true bottleneck 
•  On-chip wire density is very high 

–  Clock rate 
•  I/O is slower than on-chip 

–  Multiplexing  
•  No sharing of pins 

•  Impact on programming model? 
–  Massive data exchange is possible 
–  Data movement is not the 

bottleneck  
•  Locality is not that important 

32 Giga bits/sec 

10,000X 

~300 Tera bits/sec 
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Impact of Multicores 

•  How long does it take for a 
round trip communication? 

•  What changed? 
–  Length of wire 

•  Very short wires are faster 

– Pipeline stages 
•  No multiplexing  
•  On-chip is much closer 

•  Impact on programming model? 
–  Ultra-fast synchronization 
–  Can run real-time apps on multiple 

cores 

50X 

~200 Cycles ~4 cycles 
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Chapter Outline 
•  Introduction 
•  Parallel Computers 
•  Shared-Memory Programming 

•  Synchronization 
•  Cache Coherence 
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Parallel Computers 
•  “A parallel computer is a collection of processing 

elements that cooperate and communicate to solve 
large problems fast.” 

•  Taxonomy of parallel computers: 
Parallel Architectures 

Shared-memory	


Multiprocessor	



Message-passing	


Multicomputer	



UMA	


(SMP)	



NUMA 

Clustered	


SMPs   

DSM	


(SC-NUMA)	



COW MPP 

CC-NUMA NCC-NUMA COMA 
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Shared-Memory Multiprocessors 

CPU CPU CPUCPU

L2 Cache L2 Cache L2 Cache L2 Cache

Bus
Arbiter

Interface

DRAM

Local
Bus

Controller

LAN
Interface

SCSI
Controller

Expansion
Bus

Controller

Hard drives
CD ROMs

Local Bus

Processor Bus

Other slow 
I/O devices
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Issues in Multiprocessors 
•  Programming 

–  Need to explicitly define parallelism 
•  Hardware 

–  Interconnection 
•  Bus 
•  Network  

–  Synchronization 
•  Test-and-set 
•  Barrier synchronization 
•  Fetch and add 

–  Cache Coherence 
•  Snoopy protocols  
•  Directory-based 
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Chapter Outline 
•  Introduction 
•  Parallel Computers 
•  Shared-Memory Programming 

•  Synchronization 
•  Cache Coherence 
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Shared-Memory Programming 
•  Many vendors have implemented their own proprietary versions 

of threads. 
•  A standardized C language threads programming interface, 

POSIX Threads or Pthreads 
•  Threaded applications offer potential performance gains and 

practical advantages: 
–  Overlapping CPU work with I/O 
–  Priority/real-time scheduling 
–  Asynchronous event handling 
–  Parallelization on SMPs 

•  Pthreads provide Over 60 routines for  
–  Thread management - thread create, join, schedule, etc. 
–  Mutexes - mutual exclusion 
–  Conditional variables - provides communication between threads 
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Threads 

Unix Process Threads within a process 
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Thread Creation 
main() 

{ 
 for (i=0;i<=n;i++) 
  pthread_create(&thread_id[i],NULL,f,(void *)&args[i]); 
 ... 
 for (i=0;i<=n;i++) 
  pthread_join(thread_id[i], NULL); 

} 
 
 
void *f(void *param) 
{ 

 ... 
 do something 
 ... 

 

… 

main() 

f() f() f() 

… 

pthread_create() 

pthread_join() 

Thread 
Create 

Thread 
Scheduling 

Priority Queue 
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Matrix Multiply 
/***************************************************************************  
Simple Multi-threaded matrix multiplication 
compile with cc -mt -xO3 -D_SOLARIS_2 thmm.c -lpthread  
or  
cc -mt -xO3 -xtarget=ultra2 -xcache=16/32/1:4096/64/1 -D_SOLARIS_2 

-xunroll=4 thmm.c -lpthread 
***************************************************************************/ 
 
#include <stdio.h> 
#include <pthread.h> 
#include <sys/time.h> 
#ifdef _SOLARIS_2 
#include <thread.h> 
#endif 
 
#define N 500 
#define NTHREADS 100  
int jmax = N/NTHREADS; 
 
/* function prototypes */ 
void* matMult( void* ); 
 
/* global matrix data */ 
double a[N][N], b[N][N], c[N][N]; 
int count=0; 
 

void main( void ) 
{  pthread_t thr[NTHREADS]; 
   int i, j; 
 
   #ifdef _SOLARIS_2 
     thr_setconcurrency(NTHREADS); 
  #endif 
 

 for( i = 0; i < NTHREADS; ++i ) { 
      pthread_create(&thr[i], NULL, matmult, (void*)i); 
   } 
   for( i = 0; i < NTHREADS; ++i ) { 
      pthread_join(thr[i], NULL); 
   } 
} 
 
void* matmult(void* thread_id) 
{  int i, j, k; 

 int offset, column; 
 offset = jmax*(int)thread_id; 

 
   for(j = 0; j < jmax; j++) {  
      column = j+offset; 
      for(i = 0; i < N; i++) { 
         for(k = 0; k < N; k++) { 
            c[i][column] = c[i][column] + a[i][k]*b[k][column]; 
         } 
      } 
   } 

 return NULL; 
} 
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Matrix Multiply 

jmax=N/NTHREADS 

X = 

void* matmult(void* thread_id) 
{  int i, j, k; 

 int offset, column; 
 offset = jmax*(int)thread_id; 

   for(j = 0; j < jmax; j++) {  
      column = j+offset; 
      for(i = 0; i < N; i++) { 
         for(k = 0; k < N; k++) { 
            c[i][column] = c[i][column] + a[i][k]*b[k][column]; 
         } 
      } 
   } 

 return NULL; 
} 



Chapter 5: Multiprocessors	

 36	



Chapter Outline 
•  Introduction 
•  Parallel Computers 
•  Shared-Memory Programming 

•  Synchronization 
•  Cache Coherence 
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Synchronization 
•  Synchronization enforces correct sequencing of 

processors and ensures mutually exclusive access to 
shared writable data. 
–  Sequence control 
–  Access control 
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Sequence Control 
•  Ensures correct timing among cooperating threads/

processes.  
–  e.g., barrier synchronization 

… 

A 

B1 B2 Bn 

C 

Barrier 
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Access Control 
/* Savings to checking transfer */!
!
struct account {!

!int checking;!
!int savings;!

};!
!
void !
savings_to_checking(struct account *ap, 

int amount)!
{!

!ap->savings -=amount;!
!ap->checking += amount;!

}!
!
int !
total_balance(struct account *ap)!
{!

!int balance;!
!balance = ap->checking + ap->saving;!
!return balance;!

} 

balance = ap->checking + !
!ap->saving;!

ap->savings -=amount;!

ap->checking += amount!

return balance;!

Thread 1! Thread 2!

Wrong balance!!

Checking Savings 

Thread 1 Thread 2 

Race conditions!

Requires mutual exclusion between 
saving_to_checking and 
total_balance!

Critical 
Section 

Critical 
Section 
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Pthreads Synchronization 
•  Need a synchronization variable allocated in memory. 

–  Lock/unlock 
•  All threads need to check the synchronization 

variable. 
–  If in use, wait until it becomes available. 

•  Pthread uses mutexes (mutual exclusions): 
–  Creating and destroying a mutex 

•  pthread_mutex_t mutex = 
PTHREAD_MUTEX_INITIALIZER;!

•  int pthread_mutex_init!
•  int pthread_mutex_destroy 

–  Locking and unlocking a mutex!
•  int pthread_mutex_lock!
•  int pthread_mutex_unlock!
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Previous Example 
/* Savings to checking transfer */!
!

struct account {!
!int checking;!
!int savings;!

};!
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;!
!
void !
savings_to_checking(struct account *ap, int 

amount)!
{!

!pthread_mutex_lock(&lock);!
!ap->savings -=amount;!
!ap->checking += amount;!
!pthread_mutex_unlock(&lock);!

}!
!
int !
total_balance(struct account *ap)!
{!

!int balance;!
!pthread_mutex_lock(&lock);!
!balance = ap->checking + ap->saving;!
!pthread_mutex_unlock(&lock);!
!return balance;!

}!

balance = ap->checking + !
!ap->saving;!

ap->savings -=amount;!

ap->checking += amount;!

return balance;!

Thread 1! Thread 2!

Critical 
Section 

Critical 
Section Checking Savings 

Thread 1 Thread 2 

lock 
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Synchronization Primitives 
•  pthread_mutex_lock and _unlock are high-level 

function calls. 
•  At some point within these calls, lock has to be read-

test/modify-write atomically. 
•  Older (CISC-based) multiprocessors provided 

synchronization primitives: 
–  Test-and-Set 
–  Fetch-and-Add 
–  Compare-and-Swap 
–  Exchange (x86) 



Chapter 5: Multiprocessors	

 43	



Test-and-Set 
•  Test-and-Set serializes access to a CS by forcing only one of 

several threads trying to access the CS.  A thread is allowed to 
enter the CS only if Test-and-Set observes that lock =0. !

!
!Test-and-Set(lock)!
!{ !temp ← lock;!
!! !lock ← 1;!
!! !return temp}!
!!
!/* Example code!*/!
!loop: !lock=Test-and-Set(lock)!
!! ! !if lock==1 then goto loop 
    {!
!! ! ! !Critical Section!
!! ! !} 
!! ! !Reset(lock){lock ← 0}	
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Fetch-and-Add 
•  Fetch-and-Add is more power than Test-and-Set in the sense that it 

allows arbitrary number of threads to share a counter.  Each thread 
after executing Fetch-and-Add will acquire a unique number, which can 
then be used in number of different ways.	



!
!Fetch-and-Add(x,a)!
!{ !temp ← x;!
!! !x← temp+a;!
!! !return temp}!

!/* Example code!*/!
!count = 1;!
!while (count <= n){!
!! !count=fetch&add(i,1);!
!! !if(count <= n)!
!! ! !{/*  execute iteration i of the loop  */}!
!}!
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Hardware Support for Sync 
•  Modern processors are RISC-based. 

–  RISC ISAs do not allow read-test/modify-write operations to 
be performed in a single instruction. 

–  Need to provide special instructions. 
–  Exception: x86 (uses xchg) 

•  Solution: A pair of special load and store instructions. 
–  MIPS: ll (load-linked or load-locked) and sc (store-

conditional)  
–  PowerPC: lwarx (load word and reserve indexed) and 

stwcx. (store word conditional indexed) 
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MIPS Support for Sync 
•  MIPS processor provides LL-SC pair: 

–  ll (load-linked or load-locked) - Loads a value and stores 
the address of the value in a link register.  If an interrupt 
occurs (e.g., context switch), or if the cache block matching 
the address in the link register is invalidated  (e.g., by 
another sc), the link register is cleared. 

–  sc (store-conditional) - Stores a value only if address 
matches the address in the link register, and is valid. 
Returns 1 if it succeeds and 0 otherwise. 
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MIPS Support for Sync 
; Example of Test-and-Set implementation!
lockit: !ll !R2, 0(R1) !; load-linked!

! !bnez !R2, lockit !; not available => spin!

! !daddui !R2, R0, #1 !; locked value!
! !sc !R2, 0(R1) !; conditional store!
! !beqz !R2, lockit !; branch if SC fails!

!
!
!

; Example of Fetch-and-Add implementation 
try: !ll !R2, 0(R1) !; load-linked!

! !addi !R3, R2, #1 !; increment!
! !sc !R23, 0(R1) !; store conditional!
! !beqz !R3, try ! !; branch if store fails 
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MIPS Support for Sync 
•  Example: A parallel loop of n iterations 

!count = 1;!
!while (count <= n){!
! !count=fetch&add(i,1);!
! !if(count <= n)!
! ! !{/*  execute iteration i of the loop  */}!
!}!

 
   Processor 1   Processor 2 
   fetch i     
      fetch i 
      store i 
   store i 

•  Since the store comes after another store, the reservation is no 
longer intact therefore store fails.	



t 
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Chapter Outline 
•  Introduction 
•  Parallel Computers 
•  Shared-Memory Programming 

•  Synchronization 
•  Cache Coherence 
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P0 P1 

Bus 

Shared  
Memory 

Caches 

load load 

store 
  x → x’ 

x → x’ 

  

Cache-Coherence Problem 

x  

P0 P1 

Bus 

Shared  
Memory 

Caches 

load load 

store 
  x → x’ 

x  

  x  

Write-through Write-back 

Sharing of Writable Data 

1 2 

3 

1 2 

3 
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Bus 

Shared  
Memory 

Caches 

P0 P1 

load load 

store 
  x → x’ 

x 

  

Cache-Coherence Problem 

x  

Write-back 

Process Migration 

Process A Process A 
Cache miss 

Bus 

Shared  
Memory 

Caches 

P0 P1 

load load 

  x → x’ 

x → x’	



  x  

Process A Process A 
Store 

1 2 

3 
4 

5 
Migrate 

1 2 

3 Migrate 
4 

5 Migrate 
Gets old	


Value! 6 

Write-through 
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P0 P1 

Bus 

Shared  
Memory 

Caches 

load load 

store 
  x → x’ 

x 

  

Cache-Coherence Problem 

Write-back 

I/O Activity 

1 3 

2 

I/O 

I/O devices, such as DMA, 
will access memory directly.  
However, for this to work, I/O 
must read memory after it is 
written back.	
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Cache Coherence for Write-Through 

I

V

PrRd/BusRd

PrRd/—

PrWr/BusWr

BusWr/—

Processor-initiated transactions

Bus-snooper -initiated transactions

PrWr/BusWr

•  All processors monitor (snoop) the bus 
for writes. 

•  Diagram is based on no-write allocate 
policy, where writes update the memory 
and update the block only if it is present 
and in the valid state.  The other option 
is write-allocate. 

•  If a write is made, an invalidate signal 
is generated on the bus, and other 
cache that have this block are 
invalidated (called write-invalidate 
protocol).	
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CC for Write-Back: MSI Protocol 

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

States 
•  Invalid (I) 
•  Shared (S): one or more 
•  Dirty or Modified (M) 
Processor Events:   
•  PrRd (read) 
•  PrWr (write) 
Bus Transactions 
•  BusRd: Request for a copy with no 

intent to modify 
•  BusRdX: Request for a copy with 

intent to modify.  Invalidates all other 
blocks. 

•  BusWB: Updates memory 
Misc. 
•  Flush: Cache writes block on bus.  

Memory and requesting cache both 
pickup the block. 
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Some Issues: 
•  Flush requires cache-to-cache transfer, i.e., both memory and the 

requesting cache pick up the block.  
•  Writing into a shared block (S → M): Uses BusRdX to acquire exclusive 

ownership.  But, the read block from MM (or another cache) can be 
ignored since the block is already in the cache (S state).  To reduce 
traffic on the bus, a new transaction, called bus upgrade or BusUpgr, 
can be used which simply invalidates other copies but does not cause 
MM (or another cache) to respond with the data for the block. 

•  When a processor reads in and modifies a data item (read followed by 
a write), two bus transactions are generated.  First is BusRd (I → S) 
and then followed by BusRdX or BusUpgr (S → M).  By adding a state 
that indicates that the block is the only copy but not modified, we can 
eliminate invalidation (BusRdX or BusUpgr), thus reducing the bus 
traffic.  This new state is called exclusive-clean. 

CC for Write-Back: MSI Protocol 
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Cache-to-Cache Transfer 

P0 P
1 

Bus 

Shared  
Memory 

Caches     x  

Cache-to-cache transfer (flush) 

BusRdX: M→I 	


BusRd: M→S	



Only Copy	



x 

P0 P1 

Bus 

Shared  
Memory 

Caches 
BusRdX or BusRd 

    x  
PrWr or PrRd	



Only Copy	



PrWr: I→M	


PrRd: I→S	



Flush requires cache-to-cache transfer, i.e., both memory and the 
requesting cache pick up the block. 

x → x’ 
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Writing into Shared Block 

P0 P1 

Bus 

Shared  
Memory 

Caches   x→x’	

   x  
BusUpgr: S→I 	



x 

P0 P1 

Bus 

Shared  
Memory 

Caches 
BusRdX 

    x  
PrWr	

 PrWr: S→M	



x 

x 

Since block already in cache, uses bus upgrade or 
BusUpgr instead BusRdX to acquire exclusive 
ownership. Reduces traffic on the bus. 

BusUpgr 

If it was BusRdX, memory would have had 
to first respond by return x and the 
invalidate itself! 
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Exclusive-Clean State 

P0 P1 

Bus 

Shared  
Memory 

Caches   x→x’	

   

x 

P0 P1 

Bus 

Shared  
Memory 

Caches 
BusRd 

    
PrRd	



PrWr: E→M	



x 

When a processor reads in (BusRd (I → S)) and modifies a data item 
(BusRdX or BusUpgr (S → M)), two bus transactions are generated.  By 
adding a state that indicates that the block is the only copy but not 
modified, we can eliminate invalidation (BusRdX or BusUpgr), thus 
reducing the bus traffic.   

x 

PrWr	



BusRdX or 	


BusUpgr 

PrRd: I→E	
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PrWr/—

BusRd/Flush

PrRd/ 

BusRdX/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush!

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush!

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S) 

•  MESI eliminates the need to invalidate 
when writing in the exclusive state.  Also 
refer to as the Illinois protocol. 

–  Modified - Main memory does not have 
an up-to-date copy of this cache line.  No 
other cache has a copy of this sector. 

–  Exclusive - Main memory has an up-to-
date copy of this cache line.  No other 
caches hold the line. 

–  Shared - Main memory has an up-to-date 
copy of this cache line.  Other caches 
may also have an up-to-date copy. 

–  Invalid - This cache does not have a valid 
copy of the sector.	



MESI Protocol 

BusUpgr 
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•  Transition I → S or I → E depends on whether any other caches 
have this block.  This is detected by a shared signal S.  
BusRd(S’) means S was unasserted, while BusRd(S) means S 
was asserted. 

•  From state E, either BusRd (E → S) or BusRdX (E → I) causes 
the block to be flushed onto the bus if cache-to-cache transfer is 
used. 

•  From state S, either BusRd or BusRdX causes one of the 
processors to flushed the block onto the bus.  Since many 
caches can have the block, a priority scheme is used.  Flush’ 
simply indicates this operation is only performed by the cache 
responsible for providing the block.  No other caches are 
involved in the process. 

Some Issues 
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Snoop-Based CC Design 

Bus-side 
Controller 

Processor 
side 

Controller 
Cache Data RAM Tag & State 

Processor Tag & State 
Snoop 

Tag 

Data Buffer 

Comparator 

Address Command Command Address Snoop 
State 

Comparator 

Processor 

Address Command 

Data 

Write-Back Buffer 

• Assumption:  
– A single level cache per processor 
– Transactions on the bus is atomic. 

• Cache controller and Tag design: 
– Two cache controllers. 
– Either dual-ported RAM or duplications of tags 

and state for every block. 

To 
Controller 

To 
Controller 

System Bus 
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•  Bus-side controller for each cache checks the 
address against its tags, and the collective result of 
the snoop from all caches must be reported on the 
bus. 

•  Requesting cache controller needs to know where 
the requested block is in other processors’ cache so 
that it can decide to load the block in exclusive (E) 
state or shared (S) state; and 

•  Memory system needs to know whether any cache 
has the block in modified (M) state, in which case the 
memory need not respond. 

 

Reporting Snoop Results 
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•  Write-backs require two bus transactions (one for 
incoming and the other for outgoing (modified or dirty) 
block that is being replaced). 

•  To speed up the write-back process, a write-back 
buffer is used to temporarily store the block being 
replaced.   

•  Before write-back is complete, it’s possible to see a 
bus transaction containing the address of the block 
being written back.  Thus, the controller must supply 
the data from the write buffer and cancel its earlier 
pending request to the bus for a write back.  This will 
require an address comparator to be added to snoop 
on the write-back buffer. 

Dealing with Write-backs 
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Non-Atomic State Transitions 

•  Assumption thus far was state transition was atomic! 
–  Bus has to arbitrate among multiple requests. 
– Request and response is done using split-transaction 

P0 P1 

Bus 

Shared  
Memory 

Caches 
BusRdX 

    
PrWr: S→M	



x 

x→x’	

 x→x’	



PrWr: S→M	



BusRdX 
Arbitration! 

P0 P1 

Bus 

Shared  
Memory 

Caches 
BusRdX 

    
PrWr: S→M→I	



x 

x→x’	



PrWr: S→M	



BusRdX 
P1 wins! 
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Transient States for Bus Acquisition 

PrWr/—

BusGrant/BusUpgr

BusRd/Flush

BusGrant/ 

BusRdX/Flush

BusGrant/BusRdX

PrRd/BusReq

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush!

E

M

I

S

PrRd/—

BusRd (S)

PrWr/BusReq

I ♦  M

S ♦  M

PrWr/ 
BusReq

BusRdX/Flush! 

I ♦  S,E

BusRdX/Flush

BusRdX/Flush!

BusGrant/ 
BusRd (S) BusRd/Flush


