
1 Copyright © 2012, Elsevier Inc. All rights reserved.

2

How to read a paper (Dally, Stanford)
n  1. Before diving in, think about what your goals are, and what you want to get out of the paper. You need to approach the

reading with an aim to extract info; you may want to target specific areas of the paper in case you are looking for
something particular.

n  2. Read the abstract first. This should be an advertisement for the paper.

n  3. Read the conclusions. Figure out what the authors accomplished, so you know what their goals were.

n  4. Find the “paper overview" section in the introduction and read it if you need to. If you don't know about a certain topic,
you may find background material here.

n  5. Make a quick pass through the paper, so you understand their presentation of the topics. Figure out how the equations
fit into the discussion, but don't try to understand the math. On the second pass, read the paper more carefully.

n  6. Highlight important parts of a paragraph so you don't have to reread the entire paragraph each time. This helps in class
discussions as well.

n  7. Write down an outline as you go- this will help you remember what you have read. You can refer back to this outline as
you go through the paper.

n  8. Look up key references if you are looking for a particular topic. This paper may not have what you are looking for, but it
may build on top of a topic you need to research. In the WEB, you can find guides that list forward references for each
paper, which may also be useful in your quest.

Copyright © 2012, Elsevier Inc. All rights reserved.

3

Multi-Core versus Many Core

Copyright © 2012, Elsevier Inc. All rights reserved.

4 Copyright © 2012, Elsevier Inc. All rights reserved.

5 Copyright © 2012, Elsevier Inc. All rights reserved.

6 Copyright © 2012, Elsevier Inc. All rights reserved.

7 Copyright © 2012, Elsevier Inc. All rights reserved.

8 Copyright © 2012, Elsevier Inc. All rights reserved.

9 Copyright © 2012, Elsevier Inc. All rights reserved.

10 Copyright © 2012, Elsevier Inc. All rights reserved.

11 Copyright © 2012, Elsevier Inc. All rights reserved.

12 Copyright © 2012, Elsevier Inc. All rights reserved.

13

FinFET

Copyright © 2012, Elsevier Inc. All rights reserved.

14

Review of Pipelining

Copyright © 2012, Elsevier Inc. All rights reserved.

15 Chapter 4 — The Processor — 15

MIPS Pipeline
n  Five stages, one step per stage

1.  IF: Instruction fetch from memory
2.  ID: Instruction decode & register read
3.  EX: Execute operation or calculate address
4.  MEM: Access memory operand
5.  WB: Write result back to register

16 Chapter 4 — The Processor — 16

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

17 Chapter 4 — The Processor — 17

Pipeline Speedup
n  If all stages are balanced

n  i.e., all take the same time
n  Time between instructionspipelined

= Time between instructionsnonpipelined
 Number of stages

n  If not balanced, speedup is less
n  Speedup due to increased throughput

n  Latency (time for each instruction) does not decrease

18 Chapter 4 — The Processor — 18

Pipelining and ISA Design
n  MIPS ISA designed for pipelining

n  All instructions are 32-bits
n  Easier to fetch and decode in one cycle
n  c.f. x86: 1- to 17-byte instructions

n  Few and regular instruction formats

n  Can decode and read registers in one step

n  Load/store addressing
n  Can calculate address in 3rd stage, access memory in 4th stage

n  Alignment of memory operands

n  Memory access takes only one cycle

19 Chapter 4 — The Processor — 19

Hazards
n  Situations that prevent starting the next

instruction in the next cycle
n  Structure hazards

n  A required resource is busy
n  Data hazard

n  Need to wait for previous instruction to complete its
data read/write

n  Control hazard
n  Deciding on control action depends on previous

instruction

20 Chapter 4 — The Processor — 20

Structure Hazards
n  Conflict for use of a resource
n  In MIPS pipeline with a single memory

n  Load/store requires data access
n  Instruction fetch would have to stall for that cycle

n  Would cause a pipeline “bubble”

n  Hence, pipelined datapaths require separate
instruction/data memories
n  Or separate instruction/data caches

21 Chapter 4 — The Processor — 21

Data Hazards
n  An instruction depends on completion of data

access by a previous instruction
n  add $s0, $t0, $t1
sub $t2, $s0, $t3

22 Chapter 4 — The Processor — 22

Forwarding (aka Bypassing)
n  Use result when it is computed

n  Don’t wait for it to be stored in a register
n  Requires extra connections in the datapath

23 Chapter 4 — The Processor — 23

Load-Use Data Hazard
n  Can’t always avoid stalls by forwarding

n  If value not computed when needed
n  Can’t forward backward in time!

24 Chapter 4 — The Processor — 24

Code Scheduling to Avoid Stalls
n  Reorder code to avoid use of load result in the

next instruction
n  C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles 13 cycles

25 Chapter 4 — The Processor — 25

Control Hazards
n  Branch determines flow of control

n  Fetching next instruction depends on branch outcome
n  Pipeline can’t always fetch correct instruction

n  Still working on ID stage of branch

n  In MIPS pipeline
n  Need to compare registers and compute target early

in the pipeline
n  Add hardware to do it in ID stage

26 Chapter 4 — The Processor — 26

Stall on Branch
n  Wait until branch outcome determined before

fetching next instruction

27 Chapter 4 — The Processor — 27

Branch Prediction
n  Longer pipelines can’t readily determine branch

outcome early
n  Stall penalty becomes unacceptable

n  Predict outcome of branch
n  Only stall if prediction is wrong

n  In MIPS pipeline
n  Can predict branches not taken
n  Fetch instruction after branch, with no delay

28 Chapter 4 — The Processor — 28

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

29 Chapter 4 — The Processor — 29

More-Realistic Branch Prediction
n  Static branch prediction

n  Based on typical branch behavior
n  Example: loop and if-statement branches

n  Predict backward branches taken
n  Predict forward branches not taken

n  Dynamic branch prediction
n  Hardware measures actual branch behavior

n  e.g., record recent history of each branch

n  Assume future behavior will continue the trend
n  When wrong, stall while re-fetching, and update history

30 Chapter 4 — The Processor — 30

Pipeline Summary

n  Pipelining improves performance by increasing
instruction throughput
n  Executes multiple instructions in parallel
n  Each instruction has the same latency

n  Subject to hazards
n  Structure, data, control

n  Instruction set design affects complexity of
pipeline implementation

The BIG Picture

31 Chapter 4 — The Processor — 31

MIPS Pipelined Datapath
§4.6 P

ipelined D
atapath and C

ontrol

WB

MEM

Right-to-left
flow leads to
hazards

32 Chapter 4 — The Processor — 32

Pipeline registers
n  Need registers between stages

n  To hold information produced in previous cycle

33 Chapter 4 — The Processor — 33

Pipeline Operation
n  Cycle-by-cycle flow of instructions through the

pipelined datapath
n  “Single-clock-cycle” pipeline diagram

n  Shows pipeline usage in a single cycle
n  Highlight resources used

n  c.f. “multi-clock-cycle” diagram
n  Graph of operation over time

n  We’ll look at “single-clock-cycle” diagrams for
load & store

34 Chapter 4 — The Processor — 34

IF for Load, Store, …

35 Chapter 4 — The Processor — 35

ID for Load, Store, …

36 Chapter 4 — The Processor — 36

EX for Load

37 Chapter 4 — The Processor — 37

MEM for Load

38 Chapter 4 — The Processor — 38

WB for Load

39 Chapter 4 — The Processor — 39

Corrected Datapath for Load

40 Chapter 4 — The Processor — 40

EX for Store

41 Chapter 4 — The Processor — 41

MEM for Store

42 Chapter 4 — The Processor — 42

WB for Store

43 Chapter 4 — The Processor — 43

Multi-Cycle Pipeline Diagram
n  Form showing resource usage

44 Chapter 4 — The Processor — 44

Multi-Cycle Pipeline Diagram
n  Traditional form

45 Chapter 4 — The Processor — 45

Single-Cycle Pipeline Diagram
n  State of pipeline in a given cycle

46 Chapter 4 — The Processor — 46

Pipelined Control (Simplified)

47 Chapter 4 — The Processor — 47

Pipelined Control
n  Control signals derived from instruction

n  As in single-cycle implementation

48 Chapter 4 — The Processor — 48

Pipelined Control

49 Chapter 4 — The Processor — 49

Data Hazards in ALU Instructions
n  Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

n  We can resolve hazards with forwarding
n  How do we detect when to forward?

§4.7 D
ata H

azards: Forw
arding vs. S

talling

50 Chapter 4 — The Processor — 50

Dependencies & Forwarding

51 Chapter 4 — The Processor — 51

Detecting the Need to Forward

n  Pass register numbers along pipeline
n  e.g., ID/EX.RegisterRs = register number for Rs

sitting in ID/EX pipeline register
n  ALU operand register numbers in EX stage

are given by
n  ID/EX.RegisterRs, ID/EX.RegisterRt

n  Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt
2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

52 Chapter 4 — The Processor — 52

Detecting the Need to Forward
n  But only if forwarding instruction will write to a

register!
n  EX/MEM.RegWrite, MEM/WB.RegWrite

n  And only if Rd for that instruction is not $zero
n  EX/MEM.RegisterRd ≠ 0,

MEM/WB.RegisterRd ≠ 0

53 Chapter 4 — The Processor — 53

Forwarding Paths

54 Chapter 4 — The Processor — 54

Forwarding Conditions
n  EX hazard

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 10

n  if (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 10

n  MEM hazard
n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)

 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

55 Chapter 4 — The Processor — 55

Double Data Hazard
n  Consider the sequence:

 add $1,$1,$2
add $1,$1,$3
add $1,$1,$4

n  Both hazards occur
n  Want to use the most recent

n  Revise MEM hazard condition
n  Only fwd if EX hazard condition isn’t true

56 Chapter 4 — The Processor — 56

Revised Forwarding Condition
n  MEM hazard

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
 ForwardA = 01

n  if (MEM/WB.RegWrite and (MEM/WB.RegisterRd ≠ 0)
 and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd ≠ 0)
 and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
 and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
 ForwardB = 01

57 Chapter 4 — The Processor — 57

Datapath with Forwarding

58 Chapter 4 — The Processor — 58

Load-Use Data Hazard

Need to
stall for
one cycle

59 Chapter 4 — The Processor — 59

Load-Use Hazard Detection
n  Check when using instruction is decoded in ID

stage
n  ALU operand register numbers in ID stage are

given by
n  IF/ID.RegisterRs, IF/ID.RegisterRt

n  Load-use hazard when
n  ID/EX.MemRead and

 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or
 (ID/EX.RegisterRt = IF/ID.RegisterRt))

n  If detected, stall and insert bubble

60 Chapter 4 — The Processor — 60

How to Stall the Pipeline
n  Force control values in ID/EX register to 0

n  EX, MEM and WB do nop (no-operation)

n  Prevent update of PC and IF/ID register
n  Using instruction is decoded again
n  Following instruction is fetched again
n  1-cycle stall allows MEM to read data for lw

n  Can subsequently forward to EX stage

61 Chapter 4 — The Processor — 61

Stall/Bubble in the Pipeline

Stall
inserted
here

62 Chapter 4 — The Processor — 62

Stall/Bubble in the Pipeline

Or, more
accurately
…

63 Chapter 4 — The Processor — 63

Datapath with Hazard Detection

64 Chapter 4 — The Processor — 64

Stalls and Performance

n  Stalls reduce performance
n  But are required to get correct results

n  Compiler can arrange code to avoid hazards and
stalls
n  Requires knowledge of the pipeline structure

The BIG Picture

65 Chapter 4 — The Processor — 65

Branch Hazards
n  If branch outcome determined in MEM

§4.8 C
ontrol H

azards

PC

Flush these
instructions
(Set control
values to 0)

66 Chapter 4 — The Processor — 66

Reducing Branch Delay
n  Move hardware to determine outcome to ID

stage
n  Target address adder
n  Register comparator

n  Example: branch taken
 36: sub $10, $4, $8
40: beq $1, $3, 7
44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7
 ...
72: lw $4, 50($7)

67 Chapter 4 — The Processor — 67

Example: Branch Taken

68 Chapter 4 — The Processor — 68

Example: Branch Taken

69 Chapter 4 — The Processor — 69

Data Hazards for Branches
n  If a comparison register is a destination of 2nd or

3rd preceding ALU instruction

…

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

add $4, $5, $6

add $1, $2, $3

beq $1, $4, target

n  Can resolve using forwarding

70 Chapter 4 — The Processor — 70

Data Hazards for Branches
n  If a comparison register is a destination of

preceding ALU instruction or 2nd preceding load
instruction
n  Need 1 stall cycle

beq stalled

IF ID EX MEM WB

IF ID EX MEM WB

IF ID

ID EX MEM WB

add $4, $5, $6

lw $1, addr

beq $1, $4, target

71 Chapter 4 — The Processor — 71

Data Hazards for Branches
n  If a comparison register is a destination of

immediately preceding load instruction
n  Need 2 stall cycles

beq stalled

IF ID EX MEM WB

IF ID

ID

ID EX MEM WB

beq stalled

lw $1, addr

beq $1, $0, target

72 Chapter 4 — The Processor — 72

Dynamic Branch Prediction
n  In deeper and superscalar pipelines, branch

penalty is more significant
n  Use dynamic prediction

n  Branch prediction buffer (aka branch history table)
n  Indexed by recent branch instruction addresses
n  Stores outcome (taken/not taken)
n  To execute a branch

n  Check table, expect the same outcome
n  Start fetching from fall-through or target
n  If wrong, flush pipeline and flip prediction

73 Chapter 4 — The Processor — 73

1-Bit Predictor: Shortcoming
n  Inner loop branches mispredicted twice!

outer: …
 …
inner: …

 …

 beq …, …, inner
 …
 beq …, …, outer

n  Mispredict as taken on last iteration of
inner loop

n  Then mispredict as not taken on first
iteration of inner loop next time around

74 Chapter 4 — The Processor — 74

2-Bit Predictor
n  Only change prediction on two successive

mispredictions

75 Chapter 4 — The Processor — 75

Calculating the Branch Target
n  Even with predictor, still need to calculate the

target address
n  1-cycle penalty for a taken branch

n  Branch target buffer
n  Cache of target addresses
n  Indexed by PC when instruction fetched

n  If hit and instruction is branch predicted taken, can fetch
target immediately

76 Chapter 4 — The Processor — 76

Exceptions and Interrupts
n  “Unexpected” events requiring change

in flow of control
n  Different ISAs use the terms differently

n  Exception
n  Arises within the CPU

n  e.g., undefined opcode, overflow, syscall, …

n  Interrupt
n  From an external I/O controller

n  Dealing with them without sacrificing
performance is hard

§4.9 E
xceptions

77 Chapter 4 — The Processor — 77

Handling Exceptions
n  In MIPS, exceptions managed by a System

Control Coprocessor (CP0)
n  Save PC of offending (or interrupted) instruction

n  In MIPS: Exception Program Counter (EPC)
n  Save indication of the problem

n  In MIPS: Cause register
n  We’ll assume 1-bit

n  0 for undefined opcode, 1 for overflow

n  Jump to handler at 8000 00180

78 Chapter 4 — The Processor — 78

Handler Actions
n  Read cause, and transfer to relevant handler
n  Determine action required
n  If restartable

n  Take corrective action
n  use EPC to return to program

n  Otherwise
n  Terminate program
n  Report error using EPC, cause, …

79 Chapter 4 — The Processor — 79

Exceptions in a Pipeline
n  Another form of control hazard
n  Consider overflow on add in EX stage

add $1, $2, $1

n  Prevent $1 from being clobbered
n  Complete previous instructions
n  Flush add and subsequent instructions
n  Set Cause and EPC register values
n  Transfer control to handler

n  Similar to mispredicted branch
n  Use much of the same hardware

80 Chapter 4 — The Processor — 80

Speculation
n  “Guess” what to do with an instruction

n  Start operation as soon as possible
n  Check whether guess was right

n  If so, complete the operation
n  If not, roll-back and do the right thing

n  Common to static and dynamic multiple issue
n  Examples

n  Speculate on branch outcome
n  Roll back if path taken is different

n  Speculate on load
n  Roll back if location is updated

81 Chapter 4 — The Processor — 81

Compiler/Hardware Speculation
n  Compiler can reorder instructions

n  e.g., move load before branch
n  Can include “fix-up” instructions to recover from

incorrect guess
n  Hardware can look ahead for instructions to

execute
n  Buffer results until it determines they are actually

needed
n  Flush buffers on incorrect speculation

82 Chapter 4 — The Processor — 82

Static Multiple Issue
n  Compiler groups instructions into “issue packets”

n  Group of instructions that can be issued on a single cycle
n  Determined by pipeline resources required

n  Think of an issue packet as a very long instruction
n  Specifies multiple concurrent operations
n  ⇒ Very Long Instruction Word (VLIW)

83 Chapter 4 — The Processor — 83

Scheduling Static Multiple Issue
n  Compiler must remove some/all hazards

n  Reorder instructions into issue packets
n  No dependencies with a packet
n  Possibly some dependencies between packets

n  Varies between ISAs; compiler must know!

n  Pad with nop if necessary

84 Chapter 4 — The Processor — 84

MIPS with Static Dual Issue

85 Chapter 4 — The Processor — 85

MIPS with Static Dual Issue
n  Two-issue packets

n  One ALU/branch instruction
n  One load/store instruction
n  64-bit aligned

n  ALU/branch, then load/store
n  Pad an unused instruction with nop

Address Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM WB

n + 4 Load/store IF ID EX MEM WB

n + 8 ALU/branch IF ID EX MEM WB

n + 12 Load/store IF ID EX MEM WB

n + 16 ALU/branch IF ID EX MEM WB

n + 20 Load/store IF ID EX MEM WB

86 Chapter 4 — The Processor — 86

Hazards in the Dual-Issue MIPS
n  More instructions executing in parallel
n  EX data hazard

n  Forwarding avoided stalls with single-issue
n  Now can’t use ALU result in load/store in same packet

n  add $t0, $s0, $s1
load $s2, 0($t0)

n  Split into two packets, effectively a stall

n  Load-use hazard
n  Still one cycle use latency, but now two instructions

n  More aggressive scheduling required

87 Chapter 4 — The Processor — 87

Scheduling Example
n  Schedule this for dual-issue MIPS

Loop: lw $t0, 0($s1) # $t0=array element
 addu $t0, $t0, $s2 # add scalar in $s2
 sw $t0, 0($s1) # store result
 addi $s1, $s1,–4 # decrement pointer
 bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle
Loop: nop lw $t0, 0($s1) 1

addi $s1, $s1,–4 nop 2

addu $t0, $t0, $s2 nop 3

bne $s1, $zero, Loop sw $t0, 4($s1) 4

n  IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

88 Chapter 4 — The Processor — 88

Loop Unrolling
n  Replicate loop body to expose more parallelism

n  Reduces loop-control overhead

n  Use different registers per replication
n  Called “register renaming”
n  Avoid loop-carried “anti-dependencies”

n  Store followed by a load of the same register
n  Aka “name dependence”

n  Reuse of a register name

89 Chapter 4 — The Processor — 89

Loop Unrolling Example

n  IPC = 14/8 = 1.75
n  Closer to 2, but at cost of registers and code size

ALU/branch Load/store cycle
Loop: addi $s1, $s1,–16 lw $t0, 0($s1) 1

nop lw $t1, 12($s1) 2

addu $t0, $t0, $s2 lw $t2, 8($s1) 3

addu $t1, $t1, $s2 lw $t3, 4($s1) 4

addu $t2, $t2, $s2 sw $t0, 16($s1) 5

addu $t3, $t4, $s2 sw $t1, 12($s1) 6

nop sw $t2, 8($s1) 7

bne $s1, $zero, Loop sw $t3, 4($s1) 8

90 Chapter 4 — The Processor — 90

Dynamic Multiple Issue
n  “Superscalar” processors
n  CPU decides whether to issue 0, 1, 2, … each

cycle
n  Avoiding structural and data hazards

n  Avoids the need for compiler scheduling
n  Though it may still help
n  Code semantics ensured by the CPU

91 Chapter 4 — The Processor — 91

Speculation
n  Predict branch and continue issuing

n  Don’t commit until branch outcome determined

n  Load speculation
n  Avoid load and cache miss delay

n  Predict the effective address
n  Predict loaded value
n  Load before completing outstanding stores
n  Bypass stored values to load unit

n  Don’t commit load until speculation cleared

92 Chapter 4 — The Processor — 92

Why Do Dynamic Scheduling?
n  Why not just let the compiler schedule code?
n  Not all stalls are predicable

n  e.g., cache misses

n  Can’t always schedule around branches
n  Branch outcome is dynamically determined

n  Different implementations of an ISA have different
latencies and hazards

93 Chapter 4 — The Processor — 93

Does Multiple Issue Work?

n  Yes, but not as much as we’d like
n  Programs have real dependencies that limit ILP
n  Some dependencies are hard to eliminate

n  e.g., pointer aliasing
n  Some parallelism is hard to expose

n  Limited window size during instruction issue
n  Memory delays and limited bandwidth

n  Hard to keep pipelines full
n  Speculation can help if done well

The BIG Picture

94 Chapter 4 — The Processor — 94

Power Efficiency
n  Complexity of dynamic scheduling and

speculations requires power
n  Multiple simpler cores may be better

Microprocessor Year Clock Rate Pipeline
Stages

Issue
width

Out-of-order/
Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc III 2003 1950MHz 14 4 No 1 90W

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

95 Chapter 4 — The Processor — 95

The Opteron X4 Microarchitecture
§4.11 R

eal S
tuff: The A

M
D

 O
pteron X

4 (B
arcelona) P

ipeline

72
phys
ical
regi
ster
s

96 Chapter 4 — The Processor — 96

The Opteron X4 Pipeline Flow
n  For integer operations

n  FP is 5 stages longer
n  Up to 106 RISC-ops in progress

n  Bottlenecks
n  Complex instructions with long

dependencies

n  Branch mispredictions

n  Memory access delays

97 Chapter 4 — The Processor — 97

Fallacies
n  Pipelining is easy (!)

n  The basic idea is easy
n  The devil is in the details

n  e.g., detecting data hazards

n  Pipelining is independent of technology
n  So why haven’t we always done pipelining?
n  More transistors make more advanced techniques feasible
n  Pipeline-related ISA design needs to take account of

technology trends
n  e.g., predicated instructions

§4.13 Fallacies and P
itfalls

