MI<

MORGAN KAUFMANN

JOHN L. HENNESSY JAVID A. PATTERSON

COMPUTER
ARCHITECTURE

MK

MORGAN KAUFMANN

_Hmu_tgr_gad a_ paper (Dally, Stanford)

1. Before diving in, think about what your goals are, and what you want to get out of the paper. You need to approach the
reading with an aim to extract info; you may want to target specific areas of the paper in case you are looking for
something particular.

. 2. Read the abstract first. This should be an advertisement for the paper.
= 3. Read the conclusions. Figure out what the authors accomplished, so you know what their goals were.

. 4. Find the “paper overview" section in the introduction and read it if you need to. If you don't know about a certain topic,
you may find background material here.

. 5. Make a quick pass through the paper, so you understand their presentation of the topics. Figure out how the equations
fit into the discussion, but don't try to understand the math. On the second pass, read the paper more carefully.

= 6. Highlight important parts of a paragraph so you don't have to reread the entire paragraph each time. This helps in class
discussions as well.

= 7. Write down an outline as you go- this will help you remember what you have read. You can refer back to this outline as
you go through the paper.

» 8. Look up key references if you are looking for a particular topic. This paper may not have what you are looking for, but it
may build on top of a topic you need to research. In the WEB, you can find guides that list forward references for each
paper, which may also be useful in your quest.

MK

MORGAN KAUFMANN

Multi-Core versus Many Core

Memory Controlles Memory Cont oller

E;u_

w? L'l_;g
I B L i L

00TX9-2

k

Comparison between Tile and Intel Core

| processor [Numberof] frequency | Ava Poner Rl
L aeeiee frequency increases, it

TILEPro36 36 500MHz 9-13W is impossible to keep
TILE64/Pro64 64 700MHz/866MHz 15-23W (all cores) POWEr consumptiqn in
the reasonable limits.

TILE-Gx36 36 1.25GHz/1.5GHz 10-55W Multi-core becomes a
TILE-Gx64 64 1.25GHz/1.5GHz 10-55W natural choice in order
TILE-Gx100 100 1.25GHz/1.5GHz 10-55W to use the power
e advantage implied in
ntel Core . .

Cost Per Transistor Reduction (US Dollar)

\ 130nm 2,450
\\ 10%

90nm 2,810

5% Beyond 20nm, cost- “ > 1%

) reduction will be hard 4,024
to achieve. But 4,817
performance might 6,638
be improved. i Trends 2012 Perspectve)

20

15 4

Microcents

2000 2001 2002

45nm 32nm 22nm
7.67 6.89 6.66

(17.9) (10.1) (3.3)

Cost Per Gate Trends
Source: Industry Restructuring, IBS Report, 2007

gV

(33.6)

9.34
(25.6)

Cost per gate (microcent) 18.88
* Percent decline (%) NA

2010 = $50B
~10% of

©w
c
Q
= 40 -
o
= 30 - > §46.SB
7] Difference
o
O 20- 1995 = $1B
- ~1% of
(1. 10 - -
0 :

~3.5-SB$ 1998 2001 2004 2007 2010 2013
Year

pjection, Karen Brown, “Beyond the Wall: Technologies for the Future”
D01 Symposium on Microlithography; 2009 Actual, IC Insights
Wally Rhines, Chairman & CEO, Mentor Graphics, August 2010

Recently, many IDMs’ have announced that they would ngt invest in
developing new fabrication process and become Fab-lite ¢r fabless.

Dongbu Hitek

Freescale If no other foundry

Fujitsu -

Global Foundries Freescale Jomed the 16/14nm camp,
Grace Semiconductor Fujtsu fabless companies would not
IBM Global Foundries

Infineon BM e be happy at all.

Intel Infineon Fujitsu

Panasonic Intel Global Foundries

Renesas(NEC) Panasonic IBM

Samsung Renesas(NEC) Intel

Seiko Epson Samsung Panasonic Global Foundrie

SMIC SMIC Renesas(NEC) Intel

Sony Sony Samsung Panasonic Global Foundries

ST Microelectronics ST Microelectronics ~ SMIC Samsung Intel

Texas Instruments Texas Instruments ST Microelectronics ~ SMIC Samsung

Toshiba Toshiba Toshiba ST Microelectronics ~ SMIC

HHNEC HHNEC HHNEC(HL) HHNEC(HL) ST Microelectronics ~ Intel
TSMC TSMC TSMC TSMC TSMC Samsung
UMC UMC UMC umcC UMC TSMC

90nm 65/55nm 45/40nm 32/28nm 22/20nm 16/14nm

Process Steps

T The number of steps in 65/
45/32/22nm CMOS proc

Mask Cost (MS, Normalized)

14
12
10
8
6
4
2
0 |
45/40nm 32/28nm 22/20nm 16/14nm
65nm 45nm 32nm 22nm
Wafer Cost Perspective for 4560mm Facility Source: IBS Inc, 2012
Costs ($M)
Revenues/ Annual
Annual Operating TOTAL Cost/ wafer ($) | revenues/
Facilities | Equipment |depreciation costs cost/year | wafer (8) |(50% GPM)| fab ($M)
10K WPM 1,024 1,729 448 1,127 1,575.2 13,126.7 26,253.3 3,150.4
20K WPM 1,175 3,420 802 2,084 2,885.5 0229 24,0458 5,771.0
40K WPM 1,364 7,796 1,696 3,753 5.448. 22,702.5 10,897.2
80K WPM 1,581 15,348 3,228 6,567 9,794.7 10,202.8 20,405.6 19,589.4

Technology K gates per sq. mm Utilization Gate count (M)

node (pm) | pPotential Actual Average (%) 5mm x5mm [10mmx 10mm | 20mm x 20mm

0.25 112 92 to 97 942| 818 to 864 23 to 24 92 to 97| 366 to 387

0.18 164 133 to 140 136.7| 81.1 to 856 33 to 35| 133 to 140]| 532 to 562

0.13 248 199 to 209 2040)] 802 to 843 50 to 52| 199 to 209| 796 to 836

0.090 443 | 344 to 361 3522 776 to 814 86 to 90| 344 to 361 1375 to 1442

0.065 694 | 500 to 545 5229 721 to 786 125 to 136| 500 to 545| 200.1 to 2182

0.045 1,179 778 to 871 8247 660 to 739 195 to 218| 778 to 871 3113 to 3485

0.032 1,723 11023 to 1173 | 10984 594 to 681| 256 to 293 | 1023 to 1173 | 4094 to 4693

0.022 2726 11450 to 1682 1566.1] 532 to 61.7| 363 to 420| 1450 to 1682 | 580.1 to 6728
‘5<

% 0.13um| 90nm | 65nm | 45nm | 32nm | 22nm

Gross profit margin 46.0 48.0 50.0 52.0 55.0 57.0 401

o

" SGEA 1201 110] 100] G0] 80| 70 < Verticaton
30 7 & Layout

« Operating income 200| 200| 200| 200| 200 200 g

Cost of goods sold 540| 520| 500| 480| 450| 430 i B

» Wafer costs 50| 350| 350| 340| 300| 260 E o204 l

* Packaging costs 10.0 9.0 80 8.0 90 100) Test & Product
15 Engineering

*» Testing costs 90 8.0 70 6.0 6.0 70 o | Masks & Wafers

|Revenues | '|000| |000| |000| 1000| 1000' 1000| 018pm 0.15pm 013pm 90nm 65nm 45nm

507

10-

Number of Designs That Can Be Supported
LN
o

60 to 80

The number of designs
that foundry can support
IS declining as process
technology advances.

20 to 30

65nm 40nm 28nm

12 to 16

20nm

Source : Process Technology and Ecosystems, IBS, 2012

14nm

—u— Fabless Semiconductor Series A Fundings —m— Fabless Semiconductor M&As by Year
100 | o Fewer fabless start-ups, even fewer rising stars
 Large fabless acquiring small ones
90 -
80 74 73
69
70 -
62 62
- 57
g ol 53 53 s 54
‘f 50 -
.8 ' 42 42
=3
z 31
30 - - 27 25
20 - 16 16
ol , 3 3) 3 3
Source: K.C. Shih, GUC, 2012
0 T T T T T T T T T T T T 1
3 3 S 8 § 9 8 3 g 8 2 o o
[~] =]]] =] [*] ~]] o ~] e [~]]
N N N N N N N N N N N N N

1000

* 2009/10/11 ITRS MPU/ASIC Metal 1 (M1) % Pitch (nm)
[historical trailing at 2-yr cycle; extended to 2013; then 3-
yr cycle]

+ 2009/10/11 ITRS MPU Printed Gate Length (GLpr) (nm)
[3-yr cycle from 2011/35.3nm)]

100

p—
o

. | W 2009/10/11 ITRS MPU Physical Gate Length (nm) [begin [!
X % ; 3.8-yr cycle from 2009/29.0nm)]
4+ + - ¥ |
¥y
&0 g g ‘. ¥ ¥ +
- - .

s+

; |
“*-. S SR SR S SR SR S S R S S . -

Nanometers (1e°)

Post Moore’s Law

2005

2010

Year of Production

1
I
|
I
I
1
)
1

2015

|~—| 2011 ITRS: 2011-2026 —

1 1
: Long-Term "19-26 :

2020 2025 203

1st Change: Planar CMOS
Comes to the End

Electron Mobity (em /V)
e

T
' Tc‘ Dbpleuon Layer ;I' - - 5
Larger dopant Higher Junction Higher Series Mot;ility
fluctuation capacitance resistance degradation
Solutions:

1) New integration and process technology development
2) New material introduction

I
’ - I
. o L e [[A I O P I I I [Mistry (Intel), IEDM'07) Poly/SiON ¢=m mm) MG/HK
H He
U |ee 1980s Blc|n|o|F |ne " 1 1000
Na | Mg allsi|e]s]alar -
k |ca|sc|mi| v]cr|mn]re|co|mi]culzn|ca]|ce|As|se]| | ke H 100 -
Ro|sr| v |zr[no|mo| Tc[Ru|Rn[Palag|cal m |sa]so|Te| 1 | xe x K]
cs|Ba|ra|rmr|Ta|lw|rRe|os]| ir [Pt |au|Hg| ni |[Po]| Bi | Po| At | Ra e “10 @
Fr | Ra | Ac H 5'
Co| Pr|Nda |Pm|Sm|Eu|Ga|To | Dy |Ho | Er | Tm| vb | Lu 4 PR
| Pa| U |Np|Pulam|cm|ex| cr | Es [Fm|ma| no | Lr g '.‘
H
A nA e v ve Ve vines Ve - - —a VA VA ViA wviea | viwa LTJ o‘ 6
H He
u | Be B|lc|nNn|]oOo|F |nNe g - ; . s . . - 0.01
) AUJSUT = N O) A 350nm 250nm 180nm 130nm 90nm 65nm | 45am
K sc|m Mo co cu Ga | Ge | as | se | Br | ke .
Rb Te Micd|lm|[Sa|sb|Te| 1 | Xe
Cofontafurfralw Ho|m I | o e +» High-K/MG enables to resume the T, scaling
r

required to sustain Moore’s law

8 years R&D

Doyle, B., IEDM, 2003 C. Auth, VLSI, 2012

MK

MORGAN KAUFMANN

Review of Pipelining

MIPS Pipeline

s Flive stages, one step per stage

IF: Instruction fetch from memory

ID: Instruction decode & register read

EX: Execute operation or calculate address
MEM: Access memory operand

WB: Write result back to register

U

Pipeline Performance

Single-cycle (T.= 800ps)

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order ' ' ' ' I | | | |
(in instructions)
Instructi Dat
w $1, 1OO($O) nsf:tjc(::hlon Reg| ALU accaezs Reg
w $2, 200($0) 800 ps e [Reg| ALU | O%R | Reg
Instruction
lw $3, 300($0) 800 ps fetch
: : 800 ps
Pipelined (T.= 200ps)
Program
execution . 200 400 600 800 1000 1200 1400
Tme T I T T T T T
order
(in instructions)
Instructi Dat
w $1,100(80) [“igign | [Red| AU | ocees |Feg
w $2,200(30) 200 ps | "o |Reg| AU | D% |Reg
I $3, 300(30) 200ps | "oen | |P8| AU | aocess |ReS

200 ps 200 ps 200 ps 200 ps 200 ps

Pipeline Speedup

s If all stages are balanced
= |.e., all take the same time

= Time between instructions ;¢ ineq
= Time between instructions
Number of stages

nonpipelined

= |f not balanced, speedup is less

s Speedup due to increased throughput
» Latency (time for each instruction) does not decrease

Pipelining and ISA Design

s MIPS ISA designed for pipelining

= All instructions are 32-bits
« Easier to fetch and decode in one cycle
= C.f. x86: 1- to 17-byte instructions

= Few and regular instruction formats
= Can decode and read registers in one step

» Load/store addressing
= Can calculate address in 3™ stage, access memory in 4 stage

= Alignment of memory operands
= Memory access takes only one cycle

Hazards

= Situations that prevent starting the next
instruction in the next cycle

s Structure hazards
= A required resource is busy

s Data hazard

= Need to wait for previous instruction to complete its
data read/write

s Control hazard

= Deciding on control action depends on previous
iInstruction

Structure Hazards

s Conflict for use of a resource

= In MIPS pipeline with a single memory
= Load/store requires data access
= Instruction fetch would have to stall for that cycle
= Would cause a pipeline “bubble”
s Hence, pipelined datapaths require separate
instruction/data memories

= Or separate instruction/data caches

Data Hazards

= An instruction depends on completion of data
access by a previous instruction

« add $sO0, $t0, $t1
sub $t2, $s0, $t3

. 200 800 1000 1200 1400 1600
Time : | , | —

400 600
add $s0, $t0, $t1 E'—E I:B— —i :

bubble bubble bubble bubble bubble
<9, 9 9 ©
bubble bubble bubble bubble bubble
© @ © ©®

sub $t2, $s0, $t3 El—f ll:’— MEM —|IB

Forwarding (aka Bypassing)

s Use result when it is computed
= Don't wait for it to be stored in a register
= Requires extra connections in the datapath

Program

execution . 200 400 600 800 1000
order Time T T T T T
(in instructions)

add $s0, $t0, $t1

MEM —IB

sub $t2, $s0, $t3

Load-Use Data Hazard

= Can’t always avoid stalls by forwarding
= If value not computed when needed
= Can't forward backward in time!

Program

execution . 200 400 600 800 1000 1200 1400
order Time : : . T T . .
(in instructions)

Iw $50, 20($t1) E—E |
@ <@ 9
sub $t2, $s0, $t3 E'—E I

e

Code Scheduling to Avoid Stalls

s Reorder code to avoid use of load result in the
next instruction

m CcodeforA = B + E; C = B + F;

Tw $t1l, 0($t0) Tw $tl, 0($t0)
Tw @ 4($t0) Tw

san | — add $t3, sti;(5t2) Tw

sw $t3, 12($t0) add $t3,

w (5t4)-8($t0) sw $t3, 12€$t0
sean | — add $t5, $t1,(5t4) add $t5, $t1,(5t4)

sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

Control Hazards

s Branch determines flow of control

= Fetching next instruction depends on branch outcome
» Pipeline can’t always fetch correct instruction
=« Still working on ID stage of branch
= In MIPS pipeline

= Need to compare registers and compute target early
In the pipeline
= Add hardware to do it in ID stage

Stall on Branch

s \Wait until branch outcome determined before
fetching next instruction

Program
execution Time 200 400 600 800 1000 1200 1400 -
order I | | [| [| g
(in instructions)

200$4,85,56 || nes] v | 22 o

Instruction Data
beq $1, $2, 40 <20TPS> fetch Reg| ALU access | 1e9
bubble¢ bubble/ bubble/ bubbl buble
«
or $7, $8, $9 < »|Instruction Data
\/ 400 ps fetch Reg| ALU access |19

Branch Prediction

= Longer pipelines can’t readily determine branch
outcome early

» Stall penalty becomes unacceptable
= Predict outcome of branch

= Only stall if prediction is wrong

= In MIPS pipeline
= Can predict branches not taken
= Fetch instruction after branch, with no delay

MIPS with Predict Not Taken

Program

order I 1 1 I 1 I 1 -

(in instructions)

Instruction Data
Pre diCtion add $4, $5, $6 fetch Reg ALU access Reg
correct boq $1,52,40 =+ en | |Res| AL | ool | Reg
~——— > Instruction Data
Iw $3, 300($0) 200 ps| fetch Reg| ALU access | °9

Y

Program

execution 200 400 600 800 1000 1200 1400 ‘

order I 1 1 I 1 1 1 -

(in instructions)

Instruction Data
Prediction add $4’ $5’ $6 fetch Reg ALU access Reg
. Instruction Data
InCOI’I‘eCt beq $1’ $2’ 40 fetch Reg ALY access Reg
| 200 ps
bubble¢/(bubble/ bubble/(bubble/(bubble
@
—or $7, $8, $9 < »(Instruction Reg| ALU aE;;:s Reg

v 400 ps fetch

More-Realistic Branch Prediction

s Static branch prediction
= Based on typical branch behavior

= Example: loop and if-statement branches
= Predict backward branches taken
= Predict forward branches not taken

= Dynamic branch prediction
= Hardware measures actual branch behavior
= €.9., record recent history of each branch

= Assume future behavior will continue the trend
= When wrong, stall while re-fetching, and update history

Pipeline Summary

= Pipelining improves performance by increasing
instruction throughput

= Executes multiple instructions in parallel
= Each instruction has the same latency

s Subject to hazards
= Structure, data, control

= Instruction set design affects complexity of
pipeline implementation

MIPS Pipelined Datapath

EX: Execute/
address calculation

ID: Instruction decode/ WB: Write back

register file read

IF: Instruction fetch MEM: Memory access

	R	
Add T T >		
4 —>-	I	ADD Add }
	result I	
	[Shift I	
	left 2	
o		I I
M : »	Read Read : I :	
u pC Address	register 1 data 1	
X	Read	
1	register 2	Address
Instruction ! Registers	0 F:jeaatg 1	
Wri.te Read	M Data M	
M E M Instruction	register data 2	u Memory u
memor X		
Y : Write : 1 o x		
data Write		
: /' : »	data	

Right-to-left WB /i/ 16
flow leads to |
hazards i

Sign-
extend

MK

MORGAN KAUFMANN

Pipeline registers

= Need registers between stages
= To hold information produced in previous cycle

IF/ID ID/EX EX/MEM MEM/WB

Pipeline Operation

s Cycle-by-cycle flow of instructions through the
pipelined datapath
= "Single-clock-cycle” pipeline diagram
= Shows pipeline usage in a single cycle
» Highlight resources used

= C.f. “multi-clock-cycle” diagram
= Graph of operation over time
s We'll look at “single-clock-cycle” diagrams for
load & store

IF for Load, Store,

MK

MORGAN KAUFMANN

T 7| extend

Read
data

MEM/WB

|
Iw |
Instruction fetch !
IF/ID ID/EX EX/MEM
Add
Shift result
left 2
c
Address % Read
2 " | register 1 Read >
*g data 1
=, Read Zero > =
register2 ALU
_ Registers peqaq > o r:slallJt > -@—>| Address
Write data 2 g
register Data
Write memory
data
o | Write
v 7| data
16 < 32
X | Sign- |

Y

ID for Load, Store, ...

Iw

Instruction decode

MK

MORGAN KAUFMANN

IF/ID

ID/EX

\

>Add

Address

Instruction -

Instruction

memory

Read

register 1

Read

register 2
Regi

Write

register

Write

data

Shift
left 2

EX/MEM

Add
result

MEM/WB

A 4

Address

Write
data

Data
memory

Read
data

EX for Loa

Iw
| |

Execution

IF/ID ID/EX EX/MEM MEM/WB

Add > > - \‘
4 AddAdd >
Shift result
left 2
PC | Address c | Read Read
2 register 1 ea >
S data 1
= | Read .
Instruction c| = |register 2 Read
> Registers > 0
memory L lwite O Read — > | Address data [M
" | register data 2 Data u
—-| Write memory 1X
data
Write
> data
16 [sign- | 32 >

v | extend

MK

MORGAN KAUFMANN

MEM for Load

MK

MORGAN KAUFMANN

IF/ID ID/EX EX/MEM
>Add > g " \I
4 o S ——
Shift
left 2
c
Address }g.; Read
E] " | register 1 Read > >
.g. data 1
2 Read Zero >
) register 2 ALY
In:‘:':s:;n > Registers Ro.q _ S g
Write data 2 o ™ o
register /
Write
data
16 i
X . | Sign- 32 —
T 7| extend

Address

MEM/WB

WB for Loa

MK

Add Add

EX/MEM

ﬂ

IF/ID ID/EX
>Add >
4 —

Shift
left 2

c

Address 2

o

=]

B

&

Instruction
memory

\

\/

Address

Write
data

Data
memory

Read
data

rite back

MEM/WB

MORGAN KAUFMANN

Corrected Datapath for Load

Y

>Add

IF/ID

ID/EX

Address

Instruction
memory

MK

MORGAN KAUFMANN

Instruction

Read
register 1

Read
register 2

Read
data 1

Registers Roqq

Write

" | register

Write
data

data 2

Shift
left 2

Y

MEM/WB

EX/MEM
Add_ Add >
ﬂ
Zero > >
ALU
ALU
result - @—>| Address
/ Data
memory

_ Write
o data

Read
data

Y

Y

EX for Store

sw

Execution

MK

MORGAN KAUFMANN

PC

IF/ID ID/EX
Add
4
Address c Read
2 register 1 Read
31 data 1
>
= »| Read
Instruction f‘ register 2
memory 1, | wiite RISt Reqq >
register data 2
—> Write
data
"\5 _ [Sign-
V| extend

EX/MEM

Address

Data
memory

Write
data

Read
data

MEM/WB

“x e =2°

MEM for St

ore

MK

MORGAN KAUFMANN

>Add

Address

Instruction
memory

IF/ID

EX/MEM

\

I v I
! Memory !
MEM/WB
e b
ta
ory

ID/EX
A L
Shift
left 2
c
-% Read Read
" | register 1 eal >
% g data 1 o
£ Read Zero
register 2 ALU
Registers Roaq ALU
Write data 2 | result
register /
Write
data
16 i
X . | Sign- 32 -
T 7| extend

WB for St

ore

MK

| sw
Write-back

MEM/WB

IF/D ID/EX
>Add >
4 —
Shift
left2
c
Address £ Read
2 register 1 Read
.g. data 1
= Read
Instruction > register %e isters
memory g i 9 Read
Write data 2
register
Write
data
16 i
3 Sign- 32 —_—
T 7| extend

EX/MEM

> e

> ~@-»-| Address
_ | Write
» 7| data

Data
memory

Read
data

MORGAN KAUFMANN

Multi-Cycle Pipeline Diagram

= Form showing resource usage

Time (in clock cycles) >
CC 1 CcC2 CCs3 CC4 CC5 CCé6 CcC7 CC8 CC9

Program
execution
order

(in instructions)

lw $10, 20($1)

sub $11, $2, $3

add $12, $3, $4

Iw $13, 24($1)

add $14, $5, $6

Multi-Cycle Pipeline Diagram

s [raditional form

Time (in clock cycles) >

MK

MORGAN KAUFMANN

CC1 CcC2 CC3 CcC4 CC5 CCe6 CcC7 ccCs CC9
Program
execution
order
(in instructions)
Instruction | Instruction . Data .
Iw $10, 20($1) tetch decode | EXecution | ° s | Write back
Instruction | Instruction . Data .
sub $11, $2, $3 fotoh decode Execution ac0eSS Write back
Instruction | Instruction . Data .
add $12, $3, $4 tetoh decode Execution acoess Write back
Instruction | Instruction . Data .
Iw $13, 24($1) tetch decode | EXecution |~ s | Write back
Instruction | Instruction . Data .
add $14, $5, $6 totch decode Execution AGoesS Write back

Single-Cycle Pipeline Diagram

= State of pipeline in a given cycle

add $14, $5, $6 | Iw $13, 24 ($1) | add $12, $3, $4 | sub $11, $2, $3 | Iw $10, 20($1) |
Instruction fetch | Instruction decode | Execution | Memory | Write-back |
IF/ID ID/EX EX/MEM MEM/WB
Add -
2 Add
Shift result
left 2
—
PC Address c Read Read
i eal
_% register 1 data 1
B regter2 Wy
Instruction £ . Al ALU Read
y { Write Registers g:t:dz m result Address data
i M
register u Data
Writ
— | da'tlae) 1x memory
Write
/-\ data
16 sign- | 32

()

MK

MORGAN KAUFMANN

ipelined Control (Simplified)

MK

MemtoReg

Oxegz—

PCSrc
IF/ID ID/EX EX/MEM MEM/WB
Add > > \
4 AddAdﬁ .
Shift resu Branch
left 2 l_j_
L0 RegWrite
M |
u PC |-—|Address & | Read)
X 3 ™ register 1 Read >~ MemWrite
L 5.1 g data 1 1
2 > Re?‘{ 2 >
Instruction ~ register < Read
memory Write Reglstersgﬁadz > > >| Address data [|
> reqi ata
register Data
—-| Write memory
data
_ | Write
X g data
Instruction |
(15-0) 16 [gjign. | 32 € [Aw T >
v\ extend " | control MemRead
Instruction
(20-16)
> 0) ALUOp
M > >
Instruction :
(15-11) 1
- >
RegDst

MORGAN KAUFMANN

Pipelined Control

= Control signals derived from instruction
= As in single-cycle implementation

\ “|wB
Instruction
Control M WB L
EX [M - WB|

IF/ID ID/EX EX/MEM MEM/WB

eline

Control

MK

MORGAN KAUFMANN

PCSrc
ID/EX
w8 EX/MEM
> Control M wB | MEM/WB
EX M WB [
IF/ID
Add \‘
4 Add Adﬁ >
Shift resu Branch
£ left 2
s ALUSrc
54 |
0 o 2
M = 2
u PC » Address 5 Read £ %
X = register 1 Read 2 £
1 E] data 1 = £
‘g > Pez?s(‘jterZ zero B =
Instruction =) ALU 71U Read
memory v Wit Registers poqqg ©c result ST >| Address data []"] =0
5| Write data 2 M M
register u Data u
»| Write X memol X
data o>\1 " !
Write
. data
Instruction
15-0] 16 [sign- | 32 6
v 7| extend Y1 control MemRead
Instruction
[20-16]
> 0
M
Instruction u
X

[15-11]

RegDst

—Data Hazards in ALU Instructions

s Consider this sequence:

sub $2, $1,%3
and $12,%2,9%5
or $13,%6,%2
add $14,%2,92
sw $15,100(%2)

= We can resolve hazards with forwarding
= How do we detect when to forward?

Dependencies & Forwarding

Time (in clock cycles) >
Value of CC1 cC2 CC3 CC4 CC5 CcCé6 cCc7 CcCs8 CCo9

register $2: 10 10 10 10 10/-20 —20 -20 -20 -20

Program
execution
order

(in instructions)

sub $2, $1, $3 DM e
=1
] l“_
and $12, $2, $5 R | DM
or $13, $6, $2 ed |||

add $14, $2,%2

vy Sw$15,100($2)

Detecting the Need to Forward

»s Pass register numbers along pipeline
= e.g., ID/EX.RegisterRs = register number for Rs
sitting in ID/EX pipeline register
s ALU operand register numbers in EX stage
are given by
= ID/EX.RegisterRs, ID/EX.RegisterRt

= Data hazards when "
Ta. EXIMEM.RegisterRd = ID/EX.RegisterRs | Ayl
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt J [PiPelinereg

~

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs | | Fwd from
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt | | piaine reg

Detecting the Need to Forward

= But only if forwarding instruction will write to a
register!
« EX/MEM.RegWrite, MEM/WB.RegWrite

= And only if Rd for that instruction is not $zero

= EX/MEM.RegisterRd # 0,
MEM/WB.RegisterRd # 0

ID/EX

R

Registers

Forwarding Paths

EX/MEM

rwardA

Rs

ALU

Rt

Rt

\

’—>C><:§) F(Lci)

\

ForwardB

Rd

\/

Data
memory

Y

MEM/WB

>
>

EX/MEM.RegisterRd

Y

e

>

m
\ unit <

MEM/WB.RegisterRd

>
_/‘

xc=s

b. With forwarding

Forwarding Conditions

s EX hazard

s if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
ForwardA = 10

» if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

= MEM hazard

= if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

= if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Double Data Hazard

s Consider the sequence:

add $1,%1,9%2
add $1,9%1,9%3
add $1,%1,%4

s Both hazards occur
s Want to use the most recent

= Revise MEM hazard condition
= Only fwd if EX hazard condition isn’t true

-—Revised Forwarding Condition

= MEM hazard

» if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRs))
and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

» if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and not (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Datapath with Forwarding

ID/EX
’—'WB EX/MEM
Control > M »WB MEM/WB
IF/ID L EX > M > WB—
> U >
> X
S - e
é Registers ALU L] N . 1
. 2 > u
Instruction | = > > M X
memory g N 'y R Data
Tl x - memory
[o
IF/ID.RegisterRs Rs ° >~
IF/ID.RegisterRt | Rt
IF/ID.RegisterRt Rt EX/MEM.RegisterRd
I IF/ID.RegisterRd | [Rd g
MEM/WB.RegisterRd
\ 4
@

MK

MORGAN KAUFMANN

Load-Use Data Hazard

Time (in clock cycles) >
CC1 CC2 CC3 CC4 CC5s CCe6 cCc7 cCs8 CC9

Program
execution
order

(in instructions)

Iw $2, 20($1) Reg| || v I Need to

- V1 stall for

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

. slt $1, $6, $7

Load-Use Hazard Detection

= Check when using instruction is decoded in ID
stage

= ALU operand register numbers in ID stage are
given by
» IF/ID.RegisterRs, IF/ID.RegisterRt

s Load-use hazard when

s ID/EX.MemRead and

((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

s |f detected, stall and insert bubble

How to Stall the Pipeline

= Force control values in ID/EX register to O
« EX, MEM and WB do nop (no-operation)

= Prevent update of PC and IF/ID register
= Using instruction is decoded again
» Following instruction is fetched again

= 1-cycle stall allows MEM to read data for 1w
= Can subsequently forward to EX stage

Stall/Bubble in the Pipeline

Time (in clock cycles) >
CC1 cC2 CCs3 CC4 CC5 CC6 cCc7 CcC8 CC9 CC10

Program
execution
order

(in instructions)

lw $2, 20($1)

bubble

/ Stall
inserted

and becomes nop

ere

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2 { d ’ ‘ DM ; 3 _g:

Stall/Bubble in the Pipeline

>

Time (in clock cycles) >
CCA1 CcC2 CC3 CC4 CC5 CcCé6 CcC7 cCs8 CC9 CC 10

Program
execution
order

(in instructions) =
w2, 2068

and becomes nop

and $4, $2, $5 stalled in ID

or $8, $2, $6 stalled in IF

add $9, $4, $2 -
Y 9
Or, more

accurately

Datapath with Hazard Detection

Hazard ID/EX.MemRead
detection |«
unit)
L
% ID/EX
£ /\ o e EX/MEM
. »{(Control >lu M > WB |_|\2EM/WB
£ X
S IF/ID U 0 EX M WB
£
M
> > > M
> U >
S g X
S Registers i . ~ - M
Y = -]
@ ALU
pclL,| Instruction | | £ > > /N? X
memory R Data X
> >~ U memory
_| X
IF/ID.RegisterRs N >
IF/ID.RegisterRt .
IF/ID.RegisterRt . Rt, M
IF/ID.RegisterRd - Rd. : > g
ID/EX.RegisterRt J
;S Forwarding
t > i -
o\ unit o

MK

MORGAN KAUFMANN

Stalls and Performance

n Stalls reduce performance
= But are required to get correct results

= Compiler can arrange code to avoid hazards and
stalls

= Requires knowledge of the pipeline structure

Branch Hazards

s |f branch outcome determined in MEM

Time (in clock cycles)
CC1 CcC2 CcCc3 CcCc4 CC5 CcCé6 cc7 ccs CC9

Program
execution
order

(in instructions)

40 beq $1, $3, 28

I

44 and $12, $2, $5

L

Flush these
> instructions

(Set control
values to 0)

48 or $13, $6, $2

52 add $14, $2, $2

—

| 72 Iw $4, 50($7)

\

Reducing Branch Delay

= Move hardware to determine outcome to ID
stage
= Target address adder
= Register comparator

s Example: branch taken

36: sub $10, $4, $8
40: beq $1, $3, 7

44: and $12, $2, $5
48: or $13, $2, $6
52: add $14, $4, $2
56: slt $15, $6, $7

72: 1w $4, 50($7)

Example: Branch Taken

and $12,$2,$5 beq $1,$3,7 ' sub$10,$4,$8 before<1> 1 before<2>
IF.Flush E E E E
: Hazard A i :
detection | ' X X
unit / ! | :
IDJEX ! !
EX/MEM E
2 MEM/WB
). | U
72

Regi *
$3,

xXc=s

Data
memory

I
Forwarding :

unit)

Clock 3

MK

MORGAN KAUFMANN

Example: Branch Taken

Iw $4, 50($7)

Bubble (nop) beq $1, $3, 7 sub $10, ... before<1>

IF.Flush

/ Hazard

detection

unit J
.

EX/MEM

M
et
@ 1

Registers é
[2 $3
) '
Sign-
I 1 1 1
: : Forwarding :
1 1 unit J T
1 1 T T
1 1 1 1
Clock 4 I ! : !
1 1 1 1
1] 1 I

MK

MORGAN KAUFMANN

Data Hazards for Branches

= |[f a comparison register is a destination of 2"d or
3 preceding ALU instruction

add 1, $2, $3 IF H ID _ EX _ ME*{‘ WB
add %4, $5, $6 IF : ID : EX T'_ME*{ WB
_ IF | ID _I'x_ ME\\{ WB
beq $1, %4, target IF ID | EX{ ME*H WB

Can resolve using forwarding

Data Hazards for Branches

= If a comparison register is a destination of
preceding ALU instruction or 2" preceding load
instruction
= Need 1 stall cycle

Tw $1, addr IF H ID _ EX _ ME*{‘ WB

add %4, $5, $6 IF : ID [EX T'_ME‘{ WB

beq stalled IF _ ID _O O _O

beq $1, $4, target _ ID-|_ EX _ ME*{| WB

Data Hazards for Branches

= If a comparison register is a destination of
Immediately preceding load instruction

= Need 2 stall cycles

Tw $1, addr IF H ID _ EX _ ME*{‘ WB

beq stalled IF _ ID O _O O

beq stalled _ ID _O O _O

beq $1, $0, target _ ID-|_ EX _ ME*H WB

Dynamic Branch Prediction

= |n deeper and superscalar pipelines, branch
penalty is more significant

= Use dynamic prediction
= Branch prediction buffer (aka branch history table)
» Indexed by recent branch instruction addresses
= Stores outcome (taken/not taken)

= [0 execute a branch
= Check table, expect the same outcome
= Start fetching from fall-through or target
= If wrong, flush pipeline and flip prediction

1-Bit Predictor: Shortcoming

= |nner loop branches mispredicted twice!

outer: ..

inner: ..

beq .., .., inner

beq .., .., outer

« Mispredict as taken on last iteration of
inner loop

« Then mispredict as not taken on first
iteration of inner loop next time around

2-Bit Predictor

= Only change prediction on two successive
mispredictions

Not taken
Taken
Not taken\ ‘ Taken
Not taken
(Predict not taken
Taken "

N

Calculating the Branch Target

s Even with predictor, still need to calculate the
target address

= 1-cycle penalty for a taken branch

= Branch target buffer

s Cache of target addresses

= Indexed by PC when instruction fetched

= If hit and instruction is branch predicted taken, can fetch
target immediately

Exceptions and Interrupts

= "Unexpected” events requiring change
in flow of control

s Different ISAs use the terms differently

= EXxception
s Arises within the CPU

= €.g., undefined opcode, overflow, syscall, ...
= |nterrupt
s From an external I/O controller

= Dealing with them without sacrificing
performance is hard

Handling Exceptions

= In MIPS, exceptions managed by a System
Control Coprocessor (CPO0)

s Save PC of offending (or interrupted) instruction
= In MIPS: Exception Program Counter (EPC)

= Save indication of the problem

= In MIPS: Cause register

= We'll assume 1-bit
= O for undefined opcode, 1 for overflow

= Jump to handler at 8000 00180

Handler Actions

Read cause, and transfer to relevant handler
Determine action required

If restartable

= Take corrective action

= use EPC to return to program
Otherwise

= [erminate program

= Report error using EPC, cause, ...

Exceptions in a Pipeline

s Another form of control hazard

= Consider overflow on add in EX stage
add $1, $2, $1
= Prevent $1 from being clobbered
= Complete previous instructions
» Flush add and subsequent instructions
s Set Cause and EPC register values
= Transfer control to handler

= Similar to mispredicted branch
= Use much of the same hardware

Speculation

s "Guess” what to do with an instruction
= Start operation as soon as possible

s Check whether guess was right
= If so, complete the operation
=« If not, roll-back and do the right thing

= Common to static and dynamic multiple issue

= Examples
= Speculate on branch outcome
= Roll back if path taken is different

= Speculate on load
= Roll back if location is updated

Compiler/Hardware Speculation

s Compiler can reorder instructions
= €.g., move load before branch
= Can include “fix-up” instructions to recover from
Incorrect guess
s Hardware can look ahead for instructions to
execute

» Buffer results until it determines they are actually
needed

= Flush buffers on incorrect speculation

Static Multiple Issue

s Compiler groups instructions into “issue packets”
= Group of instructions that can be issued on a single cycle
s Determined by pipeline resources required

= Think of an issue packet as a very long instruction

= Specifies multiple concurrent operations
= = Very Long Instruction Word (VLIW)

Scheduling Static Multiple Issue

s Compiler must remove some/all hazards
= Reorder instructions into issue packets
= No dependencies with a packet

= Possibly some dependencies between packets
= Varies between ISAs; compiler must know!

= Pad with nop if necessary

MIPS with Static Dual Issue

~
> | > | > M]]
u >
4 |—> > X
> ~ ALU—>| >
- M
4 > > M
L] | Registers u -
Instruction —| X
80000180 - Ly >
memory [| [- 4 > | Write
> data
ALUE—~ . Data | L
> memory
Address

Y
Y

Cxez)

MK

MORGAN KAUFMANN

MIPS with Static Dual Issue

s [wo-issue packets
= One ALU/branch instruction

s One load/store instruction

= 64-bit aligned
« ALU/branch, then load/store
« Pad an unused instruction with nop

Address | Instruction type Pipeline Stages

n ALU/branch IF ID EX MEM | WB

n+4 Load/store IF ID EX MEM WB

n+8 ALU/branch IF ID EX MEM | WB

n+12 Load/store IF ID EX MEM WB

n+16 ALU/branch IF ID EX MEM | WB
n+ 20 Load/store IF ID EX MEM WB

Hazards in the Dual-lssue MIPS

= More instructions executing in parallel

s EX data hazard

s Forwarding avoided stalls with single-issue

= Now can’t use ALU result in load/store in same packet

« add $t0, $s0, $s1
Toad $s2, 0(5t0)

= Split into two packets, effectively a stall

s Load-use hazard

= Still one cycle use latency, but now two instructions
= More aggressive scheduling required

| Scheduling Example

s Schedule this for dual-issue MIPS

Loop: 1w $t0, 0($sl) # $tO=array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, 0($sl) # store result
addi $s1, $s1,-4 # decrement pointer
bne $s1, $zero, Loop # branch $s1!=0

ALU/branch Load/store cycle

Loop: Tw $t0, 0($sD) 1

addi $s1, $s1,-4 2
addu $t0, $t0, $s2 3
bne $s1, $zero, Loop |[sw $t0, 4($sl) 4

. IPC = 5/4 = 1.25 (c.f. peak IPC = 2)

Loop Unrolling

= | Replicate loop body to expose more parallelism
= Reduces loop-control overhead

» Use different registers per replication
» Called “register renaming”

= Avoid loop-carried “anti-dependencies”
= Store followed by a load of the same register

= Aka “name dependence”
= Reuse of a register name

Loop Unrolling Example

ALU/branch Load/store cycle
Loop: |addi $s1, $s1,-16 Tw $t0, 0($s1) 1
Tw $t1, 12($sl) 2
addu $t0, $t0, $s2 Tw $t2, 8(%$sl) 3
addu $t1, $tl, $s2 Tw $t3, 4($s1) 4
addu $t2, $t2, $s2 sw $t0, 16($s1) 5
addu $t3, $t4, $s2 sw $tl, 12($s1) 6
sw $t2, 8($sl) 7
bne $s1, $zero, Loop |sw $t3, 4($sl) 8

s IPC=14/8=1.75

= Closer to 2, but at cost of registers and code size

Dynamic Multiple Issue

= "Superscalar’ processors

s CPU decides whether to issue 0, 1, 2, ... each
cycle
= Avoiding structural and data hazards

= Avoids the need for compiler scheduling

= Though it may still help
= Code semantics ensured by the CPU

Speculation

= Predict branch and continue issuing
= Don’t commit until branch outcome determined

= Load speculation

= Avoid load and cache miss delay
» Predict the effective address
« Predict loaded value
= Load before completing outstanding stores
» Bypass stored values to load unit

= Don’t commit load until speculation cleared

Why Do Dynamic Scheduling?

= Why not just let the compiler schedule code?

= Not all stalls are predicable
= €.9., cache misses

= Can’t always schedule around branches
= Branch outcome is dynamically determined

» Different implementations of an ISA have different
latencies and hazards

Does Multiple Issue Work?

= Yes, but not as much as we'd like
= Programs have real dependencies that limit ILP
s Some dependencies are hard to eliminate
= e.g., pointer aliasing
s Some parallelism is hard to expose
= Limited window size during instruction issue

= Memory delays and limited bandwidth
= Hard to keep pipelines full

= Speculation can help if done well

Power Efficiency

s Complexity of dynamic scheduling and
speculations requires power

= Multiple simpler cores may be better

Microprocessor Year Clock Rate | Pipeline Issue Out-of-order/ | Cores Power
Stages width Speculation

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

UltraSparc llI 2003 1950MHz 14 4 No 1 90w

UltraSparc T1 2005 1200MHz 6 1 No 8 70W

> Branch
prediction

Instruction cache

Y

Instruction prefetch
and decode

¥

RISC-operation queue

'

Dispatch and register remaining

——The Opteron X4 Microarchitectyre

phys

lregt-

Register file

¥

Integer and floating-point operation queue

Integer

ALU.
Multiplier

Integer
ALU

Integer
ALU

Floating
point

Adder
/SSE

Floating

Load/Store queue

Data
cache

MK

MORGAN KAUFMANN

Commit

ster
S

The Opteron X4 Pipeline Flow

= For integer operations

RISC-operation Reorder
queue Reorder buffer
. Decode buffer Scheduling
Insliret:g::on and »| allocation + || —— »| + dispatch Execution Daéaor(:“anci:le/
translate register unit
renaming
Number of
3 2 2 1 2

clock cycles

« FP is 5 stages longer
« Up to 106 RISC-ops in progress

Bottlenecks

= Complex instructions with long
dependencies

« Branch mispredictions
= Memory access delays

Fallacies

= Pipelining is easy (!)
= The basic idea is easy

= [he devil is in the details
= €.9g., detecting data hazards

= Pipelining is independent of technology
= S0 why haven’t we always done pipelining?
= More transistors make more advanced techniques feasible

= Pipeline-related ISA design needs to take account of
technology trends
= €.9., predicated instructions

