Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 1E

% Step 1
a) Given data:
Base Privileged O/S | Performance | Performance | I'O accesses | IO access
CPI accesses impact to nnpact to per 10,000 | time(includes
per 10,000 traptothe | trapto instructions | time to trap
instructions guest O/S | VMM to guest O/S)
2 100 20cycles 150 cycles | 20 1000 cycles

Let us assume no access to /0.

CPI=BaseCPI + ((Priviliged ofs accesses per 10,000 instr) (Performance impact 1o

trap to the guest o/s+performance impact 1o trap to VM M)

CPT=2+(100/10,000) % (20+150))

= 2H0.01x170)

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 1E

Step 2

VMM performance impact doubles:

CPI=BaseCP1 + ((Priviliged ofs accesses per 10,000 instr) x (Performance impact to
trap to the guest o/s+performance impact to trap to VMM))
= 2+((100/10,000) < (2042 <150})

= 2+(0.01x320)

Step 3

VMM performance impacts half:

CP1= BaseCPl + ((Priviliged o/s accesses per 10,000 instr) x (Performance impact to

trap to the guest o/s+0.5 x performance impact to trap to VMM))
CP1=2+((100/10,000) » (20+0.5x150))
= 2-+0.01x95)

= 2+0.95

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 1E

Step 4

Obtain a 10% performance degradation, then
I. 1> (BaseCPl + (Priviliged ofs accesses per 10,000 instr x Performance impact to
trap to the guest o/s)) = BaseCPI + ((Priviliged o/s accesses per 10,000 instr)
x (Performance impact to trap to the guest o/s + n))
1.1x(2+(100/10,000)x 20) = 2+ (100/10,000 x (20 +n))
242 =2+(0.01 * (20+n)

n = 22 cycles is longest possible penalty to trap to the VMM,

Step 5

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 1E

Base Privileged O/S | Performance | Performance = I/O accesses I/O access
CPI accesses impact to impactto per 10,000 | time(includes
| per 10,000 trap to the trap to instructions time to trap

instructions guest (/S VMM to guest O/S)
| 1.5 110 25cycles 160 cycles 10 1000 cycles

Let us assume no access to HO.

CP1=BaseCPI + ((Priviliged ofs accesses per 10,000 instr) x (Performance impact to

trap to the guest ofs+performance impact to trap to VMM))

= 1.5+0.011x185)

= 1.542.033

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 1E

Step 6

VMM pertormance impact doubles:

CP1= BaseCPI + ((Priviliged ofs accesses per 10,000 instr) x (Performance impact to

trap to the guest o/s+performance impact to trap to VMM))
CPI=1.5+((110/10,000) x (25+2 ¥ 160))

= 1.5+(0.011x345)

=1.5+3.795

= 5208

Slep 7

VMM performance impacts half®

CP1=BaseCP1 + ((Priviliged o/s accesses per 10,000 instr) x (Performance impact to

trap to the guest ofs+0.5 x performance impact to trap to VMM))
CP1=1.5((110/10,000) % (25+0.5x 160})
=1.5+0.011x105)

;omputer Organization and Design (4th)
)y Hennessy, Patterson
— — ~ Chapter 5.14, Problem 1E

Step 8
Obtain 10% performance degradation, then

1.1x (BaseCPI + (Priviliged ofs accesses per 10,000 instr x Performance impact to
trap to the guest o/s)) = BaseCP1l + ((Priviliged ofs accesses per 10,000 instr)
« (Performance impact to trap to the guest o/s + n))
L 1x(1.5+(110/10,000)x25) =1.5=(110/10,000% (25 +n))
1.9525=1.540.275-0.011 *n

n = 16.13 cycles is longest possible penalty to trap to the VMM.

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 2E

Step 1

a) Given data;
Base CPI=2
Privileged OS access = 100 per 10,000 instructions
Performance impact to trap to the guest O/S = 20 cycles
Performance impact to trap to VMM = 150 eycles
/O accesses = 20 per 10,000 instructions

170 access time = 1000 cycles

»; Step 2
CPLy, e = CP1, +(prev OS access-1/0 accesses)'1 0000 x prev impact

trapguest OS+1/0 access/ 10000 < O access time.

CPlLuon vimuatized = 2.0 + (100- 20)/10,000 x 20 + 20/10,000 = 1000
= 2+80/10,00020+ 20/10.000 * 1000
=20+0.16+20

=416

Computer Organization and Design (4th)
by Hennessy, Patterson
Chapter 5.14, Problem 2E

» Step 3
CPLy s = CPL_ ~(prev OSaccesses)/ 10000 x (perfimpact trap guest OS+ pref

impact trap VMM) + (1/0 accesses/10000) » (110 access time +pref impact trap VMM)
CPliinuatizea = 2.0 + 80/10.000 x (20 = 150) +20/10,000 x (1000 + 150)
=2.0+80/1000%170+20/10000x1150

17O bound applications have a smaller impact from virtualization because, comparatively,

a much longer time is spent on waiting for the /O accesses to complete.

Step 4

Privileged OS access = 110 per 10,000 instructions

Performance impact to trap to the guest 0/S = 25 cycles

[/O accesses = 10 per 10,000 instructions

[/0 access time = 1000 cycles

Computer Organization and Design (4th)
by Hennessy, Patterson
|) 7 - Chapter 5.14, Problem 2E

Step 5

CPLymaised = P, +(prev OS access-1/O accesses)/ 10000 x prev impact

trapguest OS)1/0 access/ 10000 x /0 access time.

CPLmpeiea = 1-5H(110-10) / 10000 %25+ 10/ 10000 x 1000
=1.5-100/10000x 25+10/10000> 1000

=] $40.25¢]

=373

Step 6

CPLy s = CPIL H(prev OSaccesses)/ 10000 (perf impact Trap guest OS+ pref
impact trap VMM)+(1/0 accesses/10000) » (1O access time +pref impact trap VMM)
CPL 00 = 1.57(110-10)/10000 % (25+160)+10/10000 x (1000+160)

= 1.5+100/10000 *185+10/10000+1160

= 1.5+1.85+1.16

=451,
170 bound applications have a smaller i mpact from virtualization because, comparatively,

a much longer time is spent on waiting for the /O accesses {o complete.

Computer Organization and Design (4th)
by Hennessy, Patterson
. o) Chapter 5.14, Problem 3E

Virtual memory aims to provide each application with the illusion of the entire address
space of the machine whereas Virtual machines aims to provide each operating system
with the illusion of having the entire machine to its disposal. Thus they both serve very
similar goals, and offer benefits such as increased securit y. Virtual memory can allow for
many applications running in the same memory space to not have to manage keeping

their memory separate.

Computer Organization and Design (4th)
by Hennessy, Patterson
- Chapter 5.14, Problem 4E

») Step1

Emulating a different ISA requires specific handling of that ISA’s APL. Each ISA has
specific behaviors that will happen upon instruction execution, interrupts, trapping to
kernel mode. etc. that therefore must be emulated, This can require many more
Instructions to be executed to emulate each instruction than was originally necessary in
the target ISA. This can cause a large performance impact and make it difficult to
properly communicate with external devices. An emulated system can potentially run
faster than on its native ISA if the emulated code can be dynamically examined and

optimized.

> Step 2

For example, if the underlying machine’s 1SA has a single instruction that can handle the
execution of several of the emulated svstem’s instructions, then potentially the number of
instructions executed can be reduced. This is similar to the recent Intel processors that do

micro- op fusion, allowing several instructions to be handled by fewer instructions.

